京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 企业须打好信息资源攻坚战
数据被认为是新时期的基础生活资料与市场要素,重要程度不亚于物质资产和人力资本。近年来,企业产生的数据量呈指数级增长,信息资源爆炸式激增,其中非结构化的数据信息达到85%左右,传统的信息资源管理技术已经无法应对大数据时代的挑战。大数据技术和其他大数据工具与设备的出现,以及云计算数据处理与应用模式的广泛运用,为企业处理日益增长的海量非结构化数据提供了高效、可扩展的低成本解决方案,弥补了传统关系型数据库或数据仓库处理非结构化数据方面的不足,深化和拓展了企业商业智能和知识服务能力,形成了数据驱动的决策机制,提高了决策水平。因此,大数据时代,企业应转变信息资源管理工作模式和利用方式,以价值创造为核心,以新一代信息技术深度应用为抓手,加强信息资源整合,精准、快速地提取增值性的有效信息,打响信息资源整合攻坚战。

大数据时代到来,企业发展机遇与挑战并存
(一)大数据掀起企业发展革新浪潮
大数据时代,数据逐渐变现为独特的流通货币。企业大数据的真正核心应用价值不在于数据本身,而是利用数据在企业内部驱动管理模式的转变、营销模式的创新和IT系统架构的变革等,通过大数据的运用,促使企业经营业务的顺利开展,为引导企业战略决策提供重要的依据。如:快速消费品行业通过大数据分析产品潜在购买关联;汽车研发企业通过分析车辆运行情况等大数据来优化用户体验;金融行业利用大数据评估个人信用风险等等。企业对于海量数据的深度挖掘和运用,将掀起新一波生产率增长和消费者盈余浪潮。
大数据驱动企业管理模式转变。大数据时代推动企业管理模式转变主要体现在“数据资产化”和“决策智能化”两个方面。第一,大数据时代,数据信息逐渐成为企业重要战略性资源,拥有的数据信息越多,能够挖掘分析获取的潜在价值就越丰富,信息化建设投资回报率就越大。因此,企业信息部门将逐渐由“成本中心”转变为“利润中心”。第二,有关数据显示,企业数据智能化程度提升10%可提高15%的产品和服务质量。大数据时代,企业可对大量的客户、业务、营销、竞争等多方面数据信息进行分析挖掘,提取有用价值信息,进行智能化决策分析,制定更加可靠的战略。因此,企业管理将通过决策智能化实现从“业务驱动”到“数据驱动”的转变。
(二)大数据时代企业信息资源管理的难点
大数据时代,物联网、云计算、移动互联网等新一代信息技术在企业产品研发、客户关系管理、风险管理、供应链管理、决策支持等环节的应用逐步深入,具有“大量(Volume)、多样(Variety)、快速(Velocity)、价值(Value)”特性的信息被大量创造出来。这些信息资源在统一标准规范、实时精准管控和深层价值挖掘上难度较大,企业面临信息资源管理的巨大挑战。
结构复杂多样,统一标准规范难。大数据时代,信息资源在组织上表现为非线性化,超文本、超媒体信息逐渐成为主要的方式;同一服务器上的信息资源也可能在数据结构、字符集、处理方式等方面存在差异。大数据这一结构复杂多样的特性给信息资源统一标准和规范的建立带来麻烦,使得体量庞大的结构化和非结构化的信息资源处于无序组织状态。标准化、规范化企业信息资源是未来企业信息化建设的重点和难点之一。
动态性与交互性并存,实时精准管控难。大数据时代,互联网信息是企业信息资源的重要组成部分,丰富的网络信息资源为企业数据获取提供了便利,这些资源为企业进行大规模、精准化的消费者行为研究提供了机会,而互联网信息的动态性是显而易见的,具有很大的自由度和随意性。同时,交互性是网络信息传播的最大特点,互联网形成了企业与用户沟通的桥梁,企业和用户共同参与,使得信息双向流动。企业对自由灵活的且互动性强的信息资源实时精准控制难度越来越大。
数量庞大且内容多样,深层价值挖掘难。大数据时代企业信息资源包罗万象,一方面是与外部的客户、合作伙伴通过文本信息、社交网路、移动应用等形式进行互动时产生大量的数据;另一方面,企业内部生产研发、综合办公、视频监控等日常经营管理活动产生的大量信息。这些信息资源在形式上表现为文本、图像、音频、视频等,是多媒体、多语种、多类型信息的混合体。研究表明,中国捕获和产生的数字信息量有望在2015年至2020年间增至8.5ZB,实现22倍的增长,或保持50%的年复合增长率。企业在PB级甚至EB级的数据中寻找相关信息无异于大海捞针,利用信息驱动决策的成本和复杂性与日俱增。
企业信息资源管理体系与信息技术发展不对称
(一)传统粗放式信息资源管理的整合度不高
企业信息资源长期处于粗放式管理状态。企业对内部产生和外部反馈的大量数据信息仅仅是存储下来,缺少信息的甄别、分类、整合和加工,很少利用信息进行管理决策,信息资源的利用率非常低。大多数企业缺乏有效的方法、手段和机制对信息资源进行管理,无法及时有效地对信息资源进行提取、集成和分析,整合度非常低。
(二)信息资源管理缺乏对大数据的深度认知
就企业而言,信息资源管理的核心目标就是确保信息资源的有效利用,做到正确决策。企业只有深度认知大数据特征以及大数据给企业信息资源管理带来的难点,才能有序组织和管理结构复杂、大量、实时且潜在价值高的数据信息,才能及时、准确地挖掘分析出海量数据信息的潜在价值,才能确保信息资源的有效利用。然而,多数企业在信息资源管理过程中,对大数据的认知还只限于表面,导致信息资源的有效利用率偏低。
(三)信息资源管理缺乏数据治理体系化建设
数据治理尚属比较新兴的、发展中的概念,随着“大(大数据)云(云计算)平(平台)移(移动互联网)”等新一代信息技术的飞速发展,对企业数据质量的要求越来越高,企业亟须数据治理(Data Governance)来输出规则的可信度高的数据。然而,目前国内大多数企业在数据治理方面还处于初级阶段,只是做了简单的数据质量检查、数据归档、数据安全等分散性的数据处理工作,没有形成数据治理方法论,数据作为企业核心资产来运作的理念尚未形成,完整的数据治理体系建设缺失。
大数据时代企业如何进行信息资源整合
(一)统一信息资源模式,强化数据标准建设
大数据时代,企业信息资源整合的关键是依托企业主数据管理(MDM,Master Data Management),强化数据标准化建设,实现信息资源模式的统一。企业主数据管理就是将企业的多个业务系统中整合最核心的、最需要共享的数据(主数据),集中进行数据的清洗和丰富,并且以服务的方式把统一的、完整的、准确的、具有共识性的主数据分发给企业内需要使用这些数据的应用。赛迪经略总结多年企业信息化规划经验,结合大数据时代企业信息资源管理的要求,提出了识别、诊断、规划、实施、维护5个阶段实现企业主数据管理的方法论。
(二)推进结构化和非结构化数据的融合发展
大数据时代,实现企业海量复杂数据信息的科学有效管理是保障大数据技术能够充分挖掘企业信息资源潜在价值的前提。纸质信息与数字化的视频、音频、邮件、图片等非结构化数据在企业信息资源中的比重的逐步攀升,蕴含了丰富的潜在价值。这些非结构化数据的构造方法重复率高、冗余存储明显,且不同对象之间可能存在复杂的关系。然而,传统的面向对象的数据模型无法实现对非结构化数据的组织和管理。因此,企业需推进结构化和非结构化数据的融合式发展,将超文本、超媒体数据模型和面向对象数据模型进行融合,构建适合结构化和非结构数据统一组织和管理的数据模型。
(三)积极部署大数据应用,驱动信息资源的有效利用
大数据时代,企业信息资源整合的最终目标是利用大数据分析与挖掘技术实现信息资源的高效利用。应用系统是大数据的根基,企业应加大大数据技术的应用部署力度,综合运用云计算、分布式计算、数据交换、数据仓库、数据挖掘以及非结构化的数据处理等多层次的大数据技术搭建大数据平台。
(四)重视数据安全管理,确保大数据生态圈信息安全
大数据时代,信息系统之间互联是必然的,他们会形成一个息息相关的生态圈。在这一生态圈里,存储和管理的大量数据信息是企业市场竞争力的核心,需要对数据安全问题进行控制和管理。因此,企业在信息资源整合过程中应以数据安全管理为前提,需要与上下游企业以及安全管理机构、评测机构等第三方机构开展广泛合作,从企业管理制度、流程和技术手段等多方面协作确保大数据生态圈的数据信息安全。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27