京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为什么大数据能化繁为简?
无论今天您走到哪,人们总是在低头看自己的移动设备。他们上线浏览、购物、服务和处理交易业务。事实上,并不只有消费人群在使用移动设备,其也被广泛应用于b2b交易。
消费者和潜在客户已经成为互联网时代的主导。在购买之前,社交网络、货比三家和查阅网站成为他们快速获取相关信息的渠道。无论身处何地,信息都在他们的指尖下。若质量和服务并不能达到用户的需求,他们便能自由地去选择只看一眼或者按下按钮。
在这样一个快节奏的、在线的移动经济时代,企业的寿命其实在缩减,而客户的重要性就像整个公司的CEO一样见怪不怪。消费者关乎于企业的生存问题,故企业同样需要和客户一起共同成长,并且优化自身业务的运营、降低风险和提高财务管理水平。企业能否生存下去不仅要学会如何留住自己的客户,还要尽可能的去全面的了解他们。
全新的数据资源
你真的了解自己的客户吗?许多企业对此的认知通常只是建立在一个数据仓库里——它会收集客户交易的信息并且捕捉到交易发生在何时何地。但除非发生交易行为,否则将会一无所知。商业的残酷竞争让人走投无路时,那有可能知道交易数据以外的数据并且分析它吗?答案是肯定的。我们可以获得更多的新资源。
访问数据:分析每一个访客在网站导航上的浏览情况能进一步了解人们购物和享受服务的渠道,再者他们是通过什么路径进行购买的,又是为什么不考虑购买等等。获取这些信息资源能更好的改善消费者的用户体验,纵观全局。
购物车数据:这类数据主要是来自于用户把商品放入或者拉出购物车的各种情况。
社交网络数据:分析来自于Facebook、LinkedIn和Twitter的数据有机会获得客户更多前所未有的信息。你能获知更多的关系网,人们喜欢或讨厌什么等等。分析这些数据还能够识别多个社区网络中最具有影响力的人有哪些。瞄准这些网红们进行营销活动可以大大地推进销量并效果显著。分析社交网络数据也让你识别情绪信息——人们说关于你的产品,你的客户服务和品牌。分析社交网络数据也能够认识到市场情绪——人们怎样谈论你的产品,你的客户服务以及品牌的情况。
传感器数据:分析有关智能科技的数据如全球定位系统(GPS),它的传感器能通过智能手机传达产品的相关使用或位置信息。其也能够用于监控生产线、资产性能、供应链和分销渠道是否按时交付给了客户。
这些新兴的数据,正向传统数据表格和数据库(RDBMSs)发起挑战。文本数据,例如:非结构化数据。这是由于我们仍想要了解其他诸多细节:有关人们、商品、地点、货币金额、日期和时间,更是去了解数据中包含的“感情”。
如今,我们正在去分析这些结构化数据的形式交易,这是一种数据形式的JavaScript对象表示法(JSON)或XML的形式和非结构化数据的文本和图像。这种数据量可能非常庞大,捕捉和分析高速流数据正不断规模化。
高级类型的分析
基于大数据的复杂性来看,其优越性能超越传统数据库中的分析运作系统,如临时查询和报告、联机分析处理(OLAP)和视觉化数据的发现。其更复杂、更庞大并且更快捷,故需要更高级的分析载体:
运作过程中的数据分析——流分析
复杂的结构化数据分析
探索性分析的数据并未模式化,其进行多结构的情感性分析,如分析Twitter的相关数据。
社交网络图表分析
综上所述,在这样的新形势下,这些新的分析载体非常适用于扩展多样化的数据存储区域,这远远超越了传统数据仓库的分析环境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01