
用excel学数据挖掘
普遍认为Excel是一种“表格计算软件”,实际上,它还兼具了数据挖掘工具和数据库的功能,是非常实用的用excel学数据挖掘的软件。接下来我们会循序渐进地介绍用excel挖掘数据的操作工具和分析方法.
Excel网认为,Excel作为一种强大的数据挖掘工具,具备以下五大功能:①函数、②图表、③数据分析、④数据透视表、⑤规划求解。
为什么说上述功能是“数据挖掘工具”呢? 下面分别介绍各自的功能并说明与数据挖掘之间的关系。
一、Excel中的函数
每人不断地存储在电脑中的数据,不能直接分析,需要进行“统计和分析处理”。数据挖掘之前,需要求出数据的平均值、总和、最大值、最小值。开始挖掘之后,为厂得到更深层的结果,还需要“统计”和“分析”。能够有效地进行“统计和分析处理”的是“函数”.Excel大约有350种函数,根据统计和分析的目的以及数据的性质,灵活使用不同的函数.
二、Excel中的图表
数据挖掘的重要方法之一是“数据可视化”。它不是把每一个数据都罗列出来,而是通过可视化,采取一目了然的表现形式。通常这样可以得到新的、有价值的结果.将数据可视化,毋庸置疑,“图表”是首选方法。做演讲时,图表更是不可或缺。Excel的“绘图工具”支持许多功能,非常实用。
Excel有70多种图表,常用的有:a、柱形图 b、折线图 c、散点图 d、直方图 e、帕雷托图(如下图):
想必许多读者在日常工作中都使用过“函数”和“图表”,但是有多少人知道下面的三种功能呢?特別是“数据分析”和“规划求解”,根据安装Excel时的不同设置,很多情况下并不会自动显示在菜单栏中。通过操作“加载宏(添加初始设置时未包含的功能)”,可以大幅提高数据挖掘和统训分析的功能。
三、Excel中的数据分析
数据挖掘工具有S-PLUs、SAS、SPSS等多种软件和专业应用程序。使用这些软件吋,需要具备一定的专业技术,还要负担一些费用。与此相反,Excel的“数据分析”对于数据挖掘的初学者而言,是一款操作简单而且实用的数据挖掘和统计分析分析工具。
Excel小编不知道Excel具备“数据分析”功能时也使用其他软件,但是,自从知道并了解它的便利性、实用性之后,为了普及数据挖掘和数据分析,在研究班课程或咨询业务中都使用它。
四、Excel中的数据透视表
Excel可以将表格中的数据转换成“数据透视表”。数据透视表又叫“交叉表”。交叉表是把数据“分层”的表。数据挖掘时“分层”也是非常重要的一环。例如,分析销售数据时,从性別、年龄、星期、天气等不同的角度进行分析,通常能够得到非常有趣的结果。但是,每次改变角度时都需要修改表格数据,非常麻烦。使用菜单栏的“数据”→“数据透视表和数据透视图”,就能方便地制作分层表。点击鼠标,可以方便地切换分析的角度。另外,双击交叉表内单元格中的数字,还可以显示该数字详细的数据(下表)。
五、Excel中的规划求解
规划求解(下图),简单地说就是“线性规划法程序”,包括线性规划法,非线性规划法和整数规划法.打开“线性规划法’,读者可能会觉得难以操作。“规划求解”是在多种约束条件(公式化)下,为了使目标变量最大(最小)而求解未知数(也叫参数)的工具,使用范围非常广泛。
曾任职于日本东京理科大学的芳贺教授说:“Excel的‘規划求解’具有强大的功能。今后通过改进使用方法,估计统计学教程也需要大幅修改!”
以前,为了求解逻辑斯蒂曲线和龚伯兹曲线等生长曲线的参数,例如在逻辑曲线中求解y=a/[l+b exp(-cx)]的a、b、c时,Excel网小编曾经使用过S-PLUS。后来才知道可以用规划求解计算。
最近,规划求解也被应用于计算协方差分析等程序,其应用范围不断扩大。从趋势上看,选择用excel学数据挖掘是个明智之举,使用规划求解极有可能促进神经网络早日实现。规划求解是实现数据挖掘的目的求最优解的代表工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08