
很多人问数据挖掘和统计分析的不同之处是什么?相同之处是什么?这样的问题,其实数据挖掘和统计分析的基础都是数学理论。
数据挖掘是直接从庞大的数据中挖掘,而统计分析则是从庞大的数据(总体)中,用随机抽样的方法抽取一部分数据(样本)。通过分析样本数据来推测总体特性(平均、比例、标准偏差等)的统计方法,被称为推测统计学。另外,统计学中还有记述统计学,它足一种能够正确记述并把握获得的数据特性的方法。甚至可以说,记述统计学+其他=数据挖掘。
数据挖掘的目的是从数据中挖掘有效信息。为了实现这个目,可以使用神经网络、购物篮分析以及“多变量分析”的数量化理论、判别分析、回归分析、逻辑回归分析、聚类分析、主成分分析、因子分析、对应分析(双尺度祛)、典型相关分析、联合分析等方法。多变量分析是将相互关联的多变量的数据特征或趋势,用统计学方法进行分析的方法的总称。多变量分析是数据挖掘的重要方法之一,包括各种统计分析方法(如下图):
如果单纯考虑数量化理论或者回归分析等统计分析方法就会发现,虽然分析过程具有很强的数学性,然而操作却只不过是“计算”而已。为了实现数据挖掘的目的,把统计学方法单独或者组合使用,是非常有效的数据分析方法。例如,回归分析在“预测”和“因子分析”时十分有效。另外,极力推荐把聚类分析和判别分析组合之后挖掘数据。
在人类基因组领域中,先通过聚类分析,例如,将总体分成5组,再按照外在基准对5组小集合进行判别分析。经过两个阶段的分析后,再进行判别预测和因子分析。就能分别得出5组小集合的特征。同样地,对交叉表数据实施对应分析(双尺度祛)后再进行聚类分析,最后做模型分类。
看了数据挖掘和统计分析的区别和介绍后,也就体会到了数据挖掘的目的所在,不过千万不要气馁或丧失自信哦,因为在前面我们就已经提到,进行数据挖掘不需要具备高深的专业知识,也提到了多变量分析是数据挖掘的重要方法。那么,“从来没听说过多变量分析”的人该怎么办呢?使用Excel就能解决。只要能够灵活使用Excel,即使没有高深的统计学知识也能挖掘数据。cda网站的目的是在通过介绍用Excel挖掘数据的方法,向网友传达数据挖掘的乐趣,而不是枯燥无味的数学概念,这也是我们能够得到众多网友支持的重要原因所在,我们也会继续努力,为大家带来更多更好更简单和有趣有价值的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08