京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多人问数据挖掘和统计分析的不同之处是什么?相同之处是什么?这样的问题,其实数据挖掘和统计分析的基础都是数学理论。
数据挖掘是直接从庞大的数据中挖掘,而统计分析则是从庞大的数据(总体)中,用随机抽样的方法抽取一部分数据(样本)。通过分析样本数据来推测总体特性(平均、比例、标准偏差等)的统计方法,被称为推测统计学。另外,统计学中还有记述统计学,它足一种能够正确记述并把握获得的数据特性的方法。甚至可以说,记述统计学+其他=数据挖掘。
数据挖掘的目的是从数据中挖掘有效信息。为了实现这个目,可以使用神经网络、购物篮分析以及“多变量分析”的数量化理论、判别分析、回归分析、逻辑回归分析、聚类分析、主成分分析、因子分析、对应分析(双尺度祛)、典型相关分析、联合分析等方法。多变量分析是将相互关联的多变量的数据特征或趋势,用统计学方法进行分析的方法的总称。多变量分析是数据挖掘的重要方法之一,包括各种统计分析方法(如下图):
如果单纯考虑数量化理论或者回归分析等统计分析方法就会发现,虽然分析过程具有很强的数学性,然而操作却只不过是“计算”而已。为了实现数据挖掘的目的,把统计学方法单独或者组合使用,是非常有效的数据分析方法。例如,回归分析在“预测”和“因子分析”时十分有效。另外,极力推荐把聚类分析和判别分析组合之后挖掘数据。
在人类基因组领域中,先通过聚类分析,例如,将总体分成5组,再按照外在基准对5组小集合进行判别分析。经过两个阶段的分析后,再进行判别预测和因子分析。就能分别得出5组小集合的特征。同样地,对交叉表数据实施对应分析(双尺度祛)后再进行聚类分析,最后做模型分类。
看了数据挖掘和统计分析的区别和介绍后,也就体会到了数据挖掘的目的所在,不过千万不要气馁或丧失自信哦,因为在前面我们就已经提到,进行数据挖掘不需要具备高深的专业知识,也提到了多变量分析是数据挖掘的重要方法。那么,“从来没听说过多变量分析”的人该怎么办呢?使用Excel就能解决。只要能够灵活使用Excel,即使没有高深的统计学知识也能挖掘数据。cda网站的目的是在通过介绍用Excel挖掘数据的方法,向网友传达数据挖掘的乐趣,而不是枯燥无味的数学概念,这也是我们能够得到众多网友支持的重要原因所在,我们也会继续努力,为大家带来更多更好更简单和有趣有价值的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10