
企业发展大数据分析策略的五个建议
这项题为《现实世界大数据使用情况分析》的研究是基于IBM公司在去年年中针对95个国家的26个行业的1144位大数据领域的专业人士进行的调查研究得出的。
调查所发现的第一件事是,对许多人来说,大数据这一术语长期处于混乱状态,甚至是令人困惑的,主要是因为大数据被这么多不同的IT领域所采用造成的。在调查的受访者中,大数据这一术语被用来描述各种不同的东西,包括:大量的数据、社交媒体分析、高级数据管理功能等等等等。
然而,该项调研也表明一些创业型企业已经开始利用大数据取得突破性的业务成果。
虽然定义大数据分析的方法很多,IBM的这项调研对于大数据分析的定义则为从现有的和新的信息,以及可用的内部源提取新见解的能力。它也指用于提取技术。
虽然这项研究调查了大数据的许多不同的方面,如大数据的四个要素:大批量、多品种、速度和准确性。其也提出了五大主要建议,帮助企业发展他们的大数据战略,以便能够使得企业数据实现大数据商业价值的最大化。这些建议包括:
1、以顾客为中心的结果
这绝对是必要的,研究指出,企业集中大数据战略的努力,将提供最大业务价值。对于大多数人来说,这意味着启动一个客户分析策略,以便为客户提供更好的服务,这反过来又帮助企业能够更好的留住客户。
虽然这似乎是显而易见的,做这项工作的困难也在逐年增加,毕竟个人数字化数据与日俱增,客户也有能够更好的了解他们的选择。
其结果是,企业需要了解他们的客户作为一个个的个体,同时需要投资于新技术和先进的分析方法帮助他们做到这一点。
在这里,最终的目标不仅是要了解客户,而且要在某种程度上与客户进行及时有效的联系,保持他们的知情权或通知他们其他相关事宜。从这方面来说,大数据分析在帮助企业与客户建立这样的关系方面的重要性越发显得重要了。
2、发展企业的整体大数据战略
您企业的大数据战略蓝图必须覆盖企业的整体愿景,其战略和要求不是基于某一个部门,而是针对整个企业为基础制定的。这将使得您的大数据发展战略是全体企业的一个共同创造,企业必须广泛了解各部门的需求,通过使用大数据来提高业务目标。
这样企业才能够识别关键的业务挑战,以及如何克服这些挑战,根据业务流程的要求,定义大数据战略将被使用。以及根据企业的体系结构、数据工具需要,使蓝图变成现实。
同时,大数据战略蓝图还为企业提供了指导,企业可通过大数据战略的制定,实施的切实可行的办法来发展各部门的业务。
3、从企业已经可用的数据开始着手
为了实现大数据战略的短期效果,企业需要充分了解他们最初能达到的目标。对于那些已经实施了一个成功的策略,并且已经实现了商业价值的企业来说,最容易获得的是充分利用企业已经掌握的数据信息。
这样做,不仅使企业容易获得已有的数据信息,而且还包括相关的技能和软件。这带来了直接的利益,因为他们的业务扩展到了大数据分析功能,包括更复杂的信息来源和类型的信息。
最成功的策略已经开始分析现有的信息库,而且还开始扩展数据仓库处理大量的信息,预测未来的形式。
4、确定业务优先级,并在其上建立发展战略
随着市场的成熟,企业正在被迫选择越来越多的分析工具。同时,他们需要在同一时间处理美国和欧洲分析能力严重短缺的问题。
大数据战略的成功取决于找到一个合适的解决问题的办法,目前,IBM已经在美国和加拿大的部分高校设立了专门的分析研究机构。
但就目前而言,企业将不得不适应市场。这意味他们必须在相关工具和技能方面进行投资。研究表明,作为这一过程的一部分,新的职业生涯模式将兴起,平衡市场上对于相关IT技能分析人才的需求。
对于那些已经有能力在企业内部采用相关技术的企业来说,他们必须注重专业发展方向,制定明确的职业晋级制度;目前在这些人才方面的投资应该是主管的首要任务。
5、制定可衡量成果的商业案例
制定一个可行的大数据发展策略,并确保企业决策者有持续的兴趣和投资,企业需要确保持续投资是基于可量化的业务成果。换句话说,企业领导者需要能够看到实施大数据发展战略的优点。
企业要做到这一点,必须确保有一个或多个高层领导积极参与和赞助大数据发展战略。同样至关重要的是业务和IT部门之间的密切合作。确保各部门对于大数据分析的所有投资的商业价值的正确理解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15