
借助用户反馈功能,如何进行用户数据分析?
对很多从事产品工作的同事来说,“以用户为中心”是工作的重点,同时也是难点。用户的心思难以捉摸,用户研究的工作也似乎高深莫测。不过,用户研究并不一定总要使用眼动测试这样专业的手段才能进行。借助现在很多产品都有的“用户反馈”功能,其实就可以进行简单的用户数据分析。
“用户反馈”作为用户研究的手段,具有独特的优势。首先,“用户反馈”反映了用户在真实使用环境中正在发生的问题。焦点小组、用户访谈等方法,在预测用户行为习惯的方面能够发挥巨大作用,但缺乏用户实际操作的数据;可用性测试能够提供用户行为的数据,但是测试环境跟用户实际的使用环境很不一样,因此得出的结论仍然是预测性的。“用户反馈”则更进一步,将用户在使用产品的行为过程中遇到的问题有效地收集起来。其次,“用户反馈”功能的实现非常简单。它可以是软件界面上的一个按钮,也可以是网站上的一个“常见问题及解答(FAQ)”页面,甚至是一部热线电话和一个接听人员。大大降低了用户研究的门槛。
用
用户反馈分析的作用
在分析“用户反馈”之前,要先明确分析“用户反馈”能做什么,不能做什么(如下图)。否则很容易让分析流于文字表面,或被用户五花八门的思路牵着鼻子走,不能命中产品问题的本质。通过对用户反馈的分析可以让我们做到三件事:第一,学习用户的语言,从用户的角度去理解产品,从而建立用户关于产品的心智模型。第二,了解用户的期望是什么,哪些期望在产品中得到了满足,哪些没有被满足。第三,了解用户在使用产品中的“痛点”,即最困扰用户使用产品的问题是什么。
另外还要注意的两点是:第一,“用户反馈”收集的建议不能代表所有用户的感受。因为即使“用户反馈”的机制门槛很低,还是会让很多不那么热心的用户在遇到问题时保持沉默。第二,直接使用用户的话来描述产品存在的问题可能存在风险。要知道用户在提意见的时候可能已经被遇到的问题惹恼了,或者自己根本对产品的使用一头雾水,无法冷静且准确的告诉你真正的问题是什么。
用户反馈的分析方法
对用户反馈进行分析,可以令用户零散输出的、缺乏组织的信息系统化,便于从中快速发现产品问题。用户反馈的分析过程分三步:制定编码->按编码将反馈归类->分析归类结果(如下图)。下面逐一进行简要的介绍。
1、编码
一般来说,用户反馈的编码和分析只抽取最近几周到几个月内的数据就足够说明问题了。在这一时间范围内从“用户反馈”系统中逐条抽取反馈,根据反馈的内容建立编码,直到不再产生新的编码为止。编码可以是任何维度上的,只要对后续的分析有帮助——比如按照反馈内容的实质建立编码(性能问题、交互问题、新功能期望等),或按照用户的感受建立编码(生气、失望、满意、超出预期等)。需要注意的是,在阅读反馈并建立编码时需要聚焦于事实,不能因为用户反馈的语气激烈就认为问题很严重。
接下来需要再从近期的用户反馈中抽取一定数量的反馈(100-200条),由两个人分别按照编码进行分类。完成后,两人将各自的分类结果进行对比。检验两人对相同编码是否理解一致?是否存在对产品改进没有意义的编码?是否存在太笼统或太狭隘的编码?是否存在实际内容相同,但命名不同的编码?根据对上述几个问题的考察,对编码系统进行微调,可以使其他未分析的反馈之后得到明确分类。
2、归类
编码建立之后,将近期反馈数据中未参与建立编码过程的反馈条目,全部按照确定的编码系统进行分类。要注意的是,因为“沉默”用户的存在,每个编码分类下的反馈条数事实上很难反映该类问题的重要程度,不可以轻易就下结论。
3、分析
在分析用户反馈的分类编码数据时,首先要注意数据的附加信息。例如,数据来自于有什么特点的用户群,数据收集于哪一时间段,用户在产生反馈时正在用产品完成什么工作,等等。其次,要观察数据的对比和变化。例如,两个用户群的反馈存在怎样的差异,用户在不同时期的反馈内容有怎样的变化,等等。可以想象,如果在一个产品新版本推出之后,负面反馈数量极具增加,那么新版本有关方面的变化很可能损害了用户的使用体验。
由于篇幅有限,关于用户反馈的分析方法就先总结到这里。长久来看,对用户反馈进行这样系统的归类和分析,可以使我们掌握用户想法的变化趋势以及用户对产品新版本的反应,有助于我们预测产品的未来发展方向。并且,用户反馈分析还具有数据收集容易,对分析人员的专业要求较低等特点,非常适合作为简便的用户数据分析工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15