
数据分析需求转型与商业模式重构
现如今各行各业对于数据分析的理解都已经发生了改变,这也使得技术层面和业务层面都出现了一定挑战,大家都希望更好的利用数据,将数据进行变现,因为数据带来的市场机遇是巨大的。
这是我第二次见Teradata天睿公司营销与业务拓展副总裁Mikael Bisgaard-Bohr,他一上来就迫不及待地和我分享了最近发生在他女儿身上的一件趣事。作为社交达人的女儿活跃在各大社交网站,有一天她看到Facebook的财报,不禁产生疑问,为什么提供免费服务还可以赚钱?
Mikael为女儿解释了Facebook是如何利用用户数据赚钱,女儿马上意识到未来在社交网站上上传数据需要更谨慎。这正是消费者越来越意识到数据的价值,这对于企业利用数据将是一个挑战。
Teradata天睿公司营销与业务拓展副总裁Mikael Bisgaard-Bohr
当然数据也可以帮助企业从新定义商业模式,在Teradata Universe峰会德国站,Mikael遇到的一个德国客户谈到,十年以后各个企业的CEO不能再找借口说我不知道这件事情发生了,因为数据可以将现实重现。
市场转型带来的技术与业务突破
在2013年,Teradata将市场分为美洲和国际两大部分,Mikael 负责市场营销及国际市场营销和业务拓展。在他看来虽然在三四年之前美国市场有一定的疲软,但2015年国际业务的各个市场都表现良好,尤其是中国市场增长明显。
Teradata去年财报出现了降幅,这也反映出传统数据仓库市场需求出现变化,数据分析相关需求却正在逐渐增加。Teradata同时也收购了多家公司来扩充技术实力,结合开源技术来提供更多更强大的数据分析服务,来应对市场的转型。
Mikael强调说,他们看重长期的发展,Teradata最重要的行业是金融、电信、零售三个行业,其中电信行业在过去一段时间基本已经达到饱和,但零售业由于中国地理分布的原因,在中国还有很多可以拓展的地方。
在三大行业之外,Teradata同样也在做一些新的拓展,尤其是新的增长领域,这其中很多是B2C的企业,因为他们会产生大量丰富的数据。另外,“中国制造2025”战略强调制造业的数字化转型,之前制造业客户更多是在营销和财务系统上进行投资,而现在核心生产系统的数据分析需求正是Teradata拓展的新领域。
在技术上Teradata也在改变策略,强调包容不同技术的分析生态系统,来帮助客户解决问题。同时,在技术上也会坚持创新,实现业务模式的不断突破。
数据将重新定义企业
现如今各行各业对于数据分析的理解都已经发生了改变,这也使得技术层面和业务层面都出现了一定挑战,大家都希望更好的利用数据,将数据进行变现,因为数据带来的市场机遇是巨大的。
以银行为例,五年前他们做的还是关系型数据库或者列式数据库,当数据不断的累积后,他们在想利用这些数据能解决什么业务问题?银行客户们总结了200多个可以用数据解决的新业务问题,这其中涉及了移动数据、网络数据、甚至各种各样交互产生的数据,并且查阅这些数据进行分析的人也在发生变化。
数据在电信行业也有三个趋势,第一,全渠道地整合线上线下信息,在销售前对客户有一个全面的了解;第二,根据客户相关数据来制定促销价格,因为定价将直接影响他们的损益;第三,通过数据了解供应链,客户在什么时间什么地点需要什么货品,帮助零售商控制成本。
有一个制造业客户曾向Mikael抱怨,流水线组装工人投诉没有时间上卫生间,但管理层却说不存在这个问题。最后他们通过给每个流水线上的工人配发一个智能穿戴设备(Fitbit)来收集工人信息解决投诉问题。
通过这些数据,他们还能发现流水线上工人的整个工作流程设计是否合理。例如,他们发现重型工业组装操作需要单手举起非常重的部件,然后又要弯下腰拿工具进行操作,所以这里就需要进行工作流程再造,而这都说明数据能更快速地帮助他们解决了多种问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15