京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据来源于用户 也谈数据分析这点事
昨天看到了caoz写的《数据分析这点事》,非常值得深度,看完后很有感触,也在这里随便写写关于数据分析的个人看法。
首先,在数据分析中我也不敢妄称高手,不会很多分析算法,不会用啥统计工具,只会傻傻的去盯着看。但是我非常喜欢看各种数据,大学时整天看各种硬件评测;研究生阶段看了无数相机、镜头评测;后来是每周琢磨全世界各种游戏机、游戏的销量。工作中也特别喜欢建立各种统计系统,看各种数据,现在公司的所有统计代码都是我自己写的,一般工作每天也会花接近30%的时间研究数据,至少可以算是个不折不扣的数据分析爱好者了。
关于数据分析,caoz已经说的非常好了,我也只能补充一下自己的经验感受了。
1、不管做统计还是看别人的数据,第一步永远是数据获取的可靠性。假如是采样数据的话,一定要看看采样方式,看看可能会存在什么样的误差。如果是自己数据的话,也要看看数据获取本身是否科学,例如统计用户行为一般都用js回调,如果还用apache日志来做统计,结果想来也不会靠谱。
2、获取到数据之后,肯定是需要建立统计,这时候,需要想想,建立什么样的统计信息才能更好的分析产品及用户的特性。很多时候,往往单一特征已经很难去描述,需要综合很多地方来看。例如网页搜索中,往往要看首条CTR、前三条CTR,末次点击等多种因素,并通过很多种不同因素结合做出分析和判断。
3、对数据要抱有怀疑之心,尤其是数据本身与你要达到的结论之间有没有必然的因果关系。举个例子,网页搜索结果如果CTR高一定就是体验好吗?搜索广告的RPM高就一定理想吗?
4、生成同一个数据,往往可以有不同的统计方法,如果选择错误的话,结论往往会大相径庭。例如想分析网站对搜索引擎的依赖性,究竟应该用PV,用Session,还是用UV做统计呢?如果一个用户一天访问多次,某些是来自搜索引擎,某些是主动访问,该如何计算呢?这里面还是有很深的学问。
5、数据中往往会有很多噪声,怎么将这些噪声过滤也很重要。就像投票有投票机,有些spider会执行你的统计js,有些用户会误点,如果没有很好的过滤和处理,会使数据的可靠性大打折扣。
6、理解各种可能会使数据产生波动的原因,并通过不断的分析、验证和排除找到真正原因。例如当发生搜索流量下降,有可能有很多种原因,例如机房网络出故障、竞争对手用某些产品捣乱、上线的代码存在重大不稳定因素、运营商出故障或者拉闸限电等等,这中间每个都有不同的验证方式,需要从服务器日志、基调数据、分区域、用户行为等多个维度去进行跟踪和试验,找到真正可能的核心原因。
对数据进行预估和判断需要一种感觉,这种感觉不是天生的,而需要不断的锻炼和培养。这个过程可能很漫长,一般情况下,需要先看很多数据,培养自己对数据的基本认识,也要分析一些事件中(如周末、节假日、或者故障等)数据的变化。而在产品上线前,先自己锻炼一下预估,然后再通过实际值对自己的预判进行验证和评估。通过这种不断的学习和分析,逐渐培养出自己对数据的领悟。
数据来源于用户,这个很多时候更是需要对人性的研究和分析。就像摆在页面不同位置的广告,CTR一般能达到多少?同样位置,摆广告好还是摆用户产品好?要做某个新产品,CTR能到多少?做互联网的大多是高端用户,很多东西自己是不会用不会点的,但正是这样,需要对用户有非常强的代入感,去换位思考,去分析人性,才能事先避免很多过于乐观的预估,以及无谓的试错。
以上,是自己的一点经验之谈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09