
互联网行业运营:数据分析是什么?
数据分析这词汇时髦的不得了,然而就像这些年所炒的各种概念一样,当冷静下来,请很多人解释数据分析到底是什么时,恐怕要有一个不错的答案很难。
比较常见的答案是:数据分析就是分析数据。那么怎么分析,分析什么呢?显然这个答案没有回答实际的问题。然而,正是这种含糊其词的状况,笼罩在业内,尤其是互联网行业的数据分析领域。似乎数据分析的诉求不断的提升,但究竟分析什么,用什么分析,分析的结果如何应用,不要说想清楚,恐怕连想都没想过。
在我看来,数据分析不是一项工作,尤其不是从后台取个数据,做个图表的工作,而是一个产品,能够满足某种实际工作需要的产品。比如数据指数系统,用来指导运营工作,让运营的同仁能够基于指数来评估自身工作的增益或者不足,进一步通过数据钻取来了解指数增加或减少的原因。好吧,这还是有点拗口。举个第三方的例 子:电视是一个让用户休闲的产品,把数据分析想象成电视吧。
数据分析中,窃以为最重要的事情,就是明确数据分析的目的是什么,就像上面电视 的例子一样,要明确电视用来干什么,别诧异,玩游戏,看电影,看球赛,看肥皂剧,唱KTV等等的用法都会使电视有所不同。因此,数据分析的目的决定了不同 的方式方法,出发点永远是如何指导工作,无论是最基础的了解现状及趋势,还是机器自动学习的算法改进,永远如此。
说到这,数据分析这个“产品”会有什么用处呢?太多了,多到让人太容易迷 失,数据会让人的野心暴涨,看到了指标A,会想着指标B,了解了这些,又希望钻取,这满满无期,虽然也有价值,但是投入产出非常不合理。因此,数据分析这 个产品,给用户的应该是“知识”,在没有转换成知识之前,所有的数据都是无价值的。我突然告诉你今天华氏105度,你觉得有价值么?
说到知识,最好的转换方式无非是6个字:图形、对比、钻取。一图胜千言,指标增长还是减少,与自己对比,与控制组对比。当发现这些变化时,进入维度中观看不同的水平,是哪种水平导致了这些变化。其实非常简单,简单到比培训什么同比、环比、均值、众数、方差、高斯分布、ANOVA、非参数统计、因子扭矩还带个旋 转、贝叶斯分布等等等等简单的多。
一定要目标导向,而不是工具导向。后者很可怕,我曾经遇到过一位同学,他很happy的告诉我他要用 SAS,我问为啥,答案是可以编程。我说好吧,心想真有米,要多么复杂的模型啊,实际上这复杂的模型就是描述统计量的计算。忘记工具、忘记模型,用目标来指引工作,假设要转化的知识是给的哪些用户,他们的业务场景假设是什么,是需要看数据来评估绩效,还是需要数据来改进工作等等。然后把知识告诉他,这就完 了。如果说真要让我推荐个什么工具,我说SQL\python\R\SPSS\Excel随便挑一个都行,如果不行,随时来找我。
这么来总结吧:数据分析,就是将数据转化成知识的产品。所以,不应该有数据分析师这个角色,而是产品经理这个角色。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08