京公网安备 11010802034615号
经营许可证编号:京B2-20210330
通过深度数据挖掘做好F2P手游的三件事
在F2P手游市场中,贫富差距的现象从未如此巨大。全球每月平均有13185款新游戏进入iOS平台;22905款进入Android平台(来自Priori Data),竞争非常激烈。很多人通过数据挖掘来分析他们的游戏,从而增强玩家的游戏体验并创造更多的盈利空间。但是究竟该怎么做呢?
通过深度数据挖掘,我们可以看清玩家在游戏中的一举一动,并加以收集、整理、分析。比如在一款FPS游戏中,知道击杀、伤害输出和承受、使用武器类型、进度、死亡次数、补给使用、怪物刷新、经验值、游戏内置货币、组队等等信息,就可以让我们对玩家行为有更多了解。在这里,希望通过以下三件需要深度数据挖掘来做的事情,可以帮助大家提升自己的F2P游戏。
1.确定玩家在哪里离开以及离开的原因
对于F2P游戏来说,留存是一项重要指标,平均20%-30%的玩家会在游戏的前两分钟就流失。追踪游戏首次玩家体验(FTUE)可以帮助我们改进新手引导。在这里,一些小改动就可以给游戏带来巨大的变化。

在F2P游戏中典型的首次玩家体验过程
我们需要确定哪些部分会导致玩家离开游戏。可能有些操作过程并不能清楚地解释或者太浪费时间了。要做到这一点,我们需要将流失和留存的玩家进行对比。
具体步骤
在游戏分析平台中,设置一个高密度的事件计数器来追踪玩家在FTUE中的一举一动。
接下来使用漏斗模型来分析这些事件的关联性,这样可以立即知道玩家在游戏中的什么地方受到了阻碍。
看看留存和付费统计在游戏中每个阶段的表现,确定关键阈值(比如大多数玩家会在第五关付费,在第三关的时候留存会达到一个峰值)。
最后,通过比较游戏内外的时间来平衡游戏,确保玩家不会失去动力或者流失。
2.划分鲸鱼玩家(大R)和普通玩家
游戏开发者们总是用各种各样的方法来区分玩家群体,以便更好的制订相应的营销策略。在F2P游戏中,通过玩家行为就可以做出各种各样的区分。鲸鱼玩家(大R土豪爹)、新手、专家、普通玩家在游戏分析中已经成为常用的术语。尽管对玩家们做出区分是有用的,但如果只是依赖这些,我们可能会忽视游戏特有的结构带来的细节区分。

通过游戏中的玩家行为识别不同玩家独有的类型
通过深度数据挖掘,我们可以看到更多详细的相关因素,比如玩家表现、战斗情况、策略与社交或者其他游戏方面。通过区分这些群体,我们可以用玩家交互工具来增强游戏体验。比如,这有可能是通过信息传递来实现的,通过各个细节来给玩家提供帮助或配送礼物,或者在需要的时候调整游戏参数。
具体步骤
在定义独特的玩家群体时首先要考虑的就是该用什么方法。比如,观察伴随击杀/死亡比的经验获取比例来分辨一个玩家是否高端。通过各种设置来测试在游戏中的互动,引进互动机制和现场测试。
3.多角度的测试
与区别玩家群体一样重要的是判断活动的时效性和长期效应。A/B测试是开发人员使用最多的方法。
A/B测试常被用来判断最优的方式,比如内购(IAP)定价。它可以显示价格是否可以被广大玩家接受,并显示对玩家的影响及盈利状况。简单地说,游戏中的一个改变可能会导致一群玩家花钱更多,而另外一群玩家则花钱更少。所以,我们需要通过各种各样的游戏界面工具从多个角度来进行评估。
具体步骤
确定在测试中需要设置的变量以及特定的用户群体。

A/B测试会用到各种不同的变量,包括游戏内置信息推送和奖励等。
一些先进的A/B测试工具可以帮助我们进行卓有成效的分析,这样我们就可以确定各种变量对游戏方方面面造成的影响。
通过深度数据挖掘来优化游戏
通过深度数据挖掘可以判断玩家与游戏的交互情况,并熟知我们的玩家。我们需要这些信息来与玩家进行有效互动。专注所有玩家的游戏体验,那么我们的游戏将会更加成功!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27