
我觉得从事数据挖掘工作,尤其是在互联网行业,主要需要三个方面的能力,即机器学习和数据挖掘的理论知识、编程开发与数据结构算法的基础和业务理解与沟通表达的能力。
上面的图里列出了这个行业不同类型的从业者机器特点。
A. 主要是负责做最顶尖机器学习相关学术研究。比如发明一些新的算法,想早期的SVM,LDA最近的一些deeplearning模型。但是处在塔尖的的他们对于这些算法在业务场景的应用或者算法的实现兴趣并不大,主要精力都花在了理论研究上,比如证明个bounds什么的。写出来的东西大部分发表在NIPS或者ICML上,一般人也看不懂。他们主要存在于一些研究机构中,如国外高校或者企业研究院。一般企业如果需要这样的人,也是挖过来当震厂之宝吉祥物,不属于我们讨论的范围。
B. 他们既对算法有比较深入的了解,又有高超的编程技术。他们的数学可能达不到炉火纯青的地步,他们的兴趣也不在于各种繁琐的理论推导。他们对已有算法进行改进,并且给出最好的实现,造福广大人民群众,比如libsvm,svdfeature,paramater server这样的工具。当然,这样的人才也是可遇不可求,而且他们也需要一个比较大的平台来施展自己的能力。他们的工作应该能够成为一个企业数据挖掘的大杀器。
C.他们对算法有一定的了解,但是不够深入。他们开发的经验有限,对于数据挖掘的应用了解也不够深入。比如很多理论方向的研究生博士生可能就处于这个状态,即使能够发表一些看起来不错的文章,但离真正做出好的实际的数据挖掘工作还有很长的一段距离,需要一步一个脚印的踏实前进。
D.他们是算法界的大神,码农中的翘楚,横扫各路ACM ICPC比赛的英雄。因为各种机缘巧合,他们没有选择数据挖掘作为自己以后的方向。虽然他们对于机器学习理论和数据挖掘的应用场景不是很了解,但凭借他们的天赋,假以时日,也一定能在这个行业有所作为。不过,其他领域也需要他们,也有他们大展拳脚的空间。
E.他们属于一般的码农,能写的一手好代码。但是对机器学习知之甚少,而且如果思维不够灵活,可能也会在业务的理解上有一些障碍。另外,沟通交流的能力通常也是码农们所欠缺的。对于应届生,如果确实有这个天赋,不妨一试;对于工作多年的码农想转行,也需要付出比较大的努力。
F.他们的工作贴近业务,对数据也有一定敏感性,可能是excel和sql的高手。但是这和数据挖掘的工作还有一定差别。最适合他们的岗位可能是BI或者数据产品经理。在这些岗位上,他们同样可以发光发热,做出卓越的贡献。
G.他们有一定的算法基础,同时对数据挖掘的业务落地也有丰富的经验。他们的瓶颈主要在于编程开发能力,这在大数据的场景下尤为明显。毕竟最好的方式是自己想idea,自己实现,至少实现一个原型。那么R或者python是一个这种的选择。没有coding,再好的算法也出不来。
H.对机器学习算法有一定的了解,熟悉各种业务,也有一定的开发能力。在数据挖掘的具体工作中,可以从业务出发,设计算法,也能对算法进行基本的实现。实际上这样的工程师还是很多的,特别是有一定工作经验的。他们的工作经验会对数据挖掘的工作起到很大的帮助。他们在算法以及编程的上的能力可能不是很高,但是足以丰富他们的思维方式,也方便与人沟通。
I.对机器学习算法有一定了解,也有较强的开发能力。适合做偏向开发的数据挖掘岗位。他们和I类的工程师密切配合,应该能有比较好的产出。他们很可能是学校的应届毕业生,学习了一些理论知识,也锻炼了开发的能力,但还缺乏实际的工作经验。互联网的数据挖掘岗位正是他们大展拳脚的好地方。
J.看起来是最好的,各项技能都很全面,也很适合做leader。但是这样的人毕竟可遇不可求。另外,每一项都好其实也就是每一项都不好,人的精力总是有限的。我觉得在一到两个方面做的比较突出,同时另外的方面也不要太弱以至于成为短板,这样就挺好的了。
根据上面说的,招聘主要根据H和I两类模版挑选人才。觉得考察的话,除了基本的开发算法,还有以下几个:
1.机器学习算法的理解,比如常见的算法的基本思想原理、应用场景、特点和求解方法。可以从两个分支考察,一个是使用经验,比如实际的一些参数设置啊,使用技巧什么的,面向H类。还有就是一些算法的实现方法,面向I类。
2.实际的项目经验,特别是数据挖掘工作。一方面考察他之前的工作情况,另外也看他的归纳总结能力与解决问题的能力。针对项目的一些细节提问,也可以看出他的做事方式和对一些知识的掌握情况。
3.对于业务的理解能力和敏感性,可以结合实际工作中的一些问题来考察。即使没有实际工作经验,也是可以看出他们在这个方面的潜力。同时也考察出理论和实际结合的能力。
4.沟通表达能力。相对于程序员,数据挖掘岗位对这个能力的要求高出不少。在整个面试的过程中,其实都有对这个能力的考察。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08