
无论是“小数据”时代还是现在的“大数据”时代,对数据的挖掘、存储、分析和使用从来就不是一件简单的事儿,而且这件事的难度还会随着数据量的增长而变得越来越大。同时,单个企业若是仅仅想要进行数据的存放和处理,去配备一整套Hadoop集群也并不经济。于是,阿里云准备将这件事做成一门生意,帮助企业对他们手中的数据进行存储和分析。
不久前,阿里云正式对外公布了一个叫做ODPS的商用服务。ODPS的全称是Open Data Processing Service,也就是开放数据处理服务。企业可以将来自前端的大量数据集中导入到阿里云中存储,这一点类似于亚马逊此前推出的Redshift数据仓库。
不仅如此。官方还表示,在这个基础上,阿里云将会开放更多的数据分析服务。目前,ODPS开放了SQL功能,以用于数据仓库和日志分析。这就像是Google此前推出的BigQuery——它可以让开发者可以使用Google的架构来运行SQL语句对超级大的数据库进行操作。同样地,现在企业也可以使用ODPS来对数据进行处理了。
在价格和性能方面,ODPS是按照使用量付费的:存储1GB的数据,每个月收取大概0.5元钱左右;阿里云还官方公布了一个数据处理能力供参考:6个小时ODPS可以处理100PB的数据。至于至关重要的商用后的SLA(服务等级协议),ODPS产品经理汤子楠披露了一部分:在技术层面,阿里云承诺放在ODPS中的数据不会泄漏,阿里巴巴和阿里云也不会查看;在服务层面,鉴于不能承诺所有提交的数据处理作业都能计算成功,如果是阿里云方面的原因导致作业失败,那么阿里云则不会收费,而且对于离线作业来说,只对作业成功的那次进行收费。
在此前,ODPS一直被应用于阿里内部的业务系统中,一个典型的应用就是阿里小贷公司的审核和放款流程。阿里巴巴的官方数据称,有超过36万人从阿里小贷借款,最小贷款额为1元,并且能够实现3分钟申请、1秒放款、0人工干预。在这些背后,阿里小贷每天需要处理30PB数据,包括店铺等级、收藏、评价等800亿个信息项,运算100多个数据模型……这些都是放在ODPS上存储和分析的。阿里云还表示,淘宝和支付宝等阿里巴巴的部分核心数据业务,也都运行在ODPS平台之上。而在ODPS的产品页面则拿出了阿里巴巴的关联公司天弘基金和众安保险作为案例来进行宣传。
从目前来看,ODPS开放的还只是针对大量数据的数据仓库功能,以及部分数据分析服务。但阿里云显然并不想止步于此。
你可以把阿里云此前一个叫做“御膳房”的服务看作ODPS未来发展方向的缩影。简单来说,“御膳房”实际上是对淘宝和天猫电商数据的挖掘、存储、分析和服务输出的整套服务。在“御膳房”中,淘宝和天猫平台上的大量电商数据被放到ODPS上进行存储,阿里巴巴还引入了第三方ISV(独立软件开发商)来针对这些数据开发分析工具和模型进行分析,最后他们将分析结果拿到服务市场上去销售给卖家——所谓针对淘宝天猫用户进行的精准广告营销,就是通过这种方法得来的。
在ODPS被开放出来之前,“御膳房”完全是阿里巴巴内部的电商平台上生长出来的产物,从数据来源,到数据取向,都是服务于淘宝和天猫平台。而在开放以后,就会有更多类型的企业和数据(包括一些阿里巴巴内部不太擅长处理的非结构化数据)被放在ODPS上,而使用范围也将不仅仅局限于阿里巴巴平台了。
用更加直白的语言来解释就是,ODPS此次作为PaaS被开放了出来进行商用,接下来,企业自身、或者借用ISV开发的工具再在ODPS之上进行数据分析,然后使用这些分析结果。
不过,ODPS现阶段仍有不少问题。汤子楠坦言,对非结构数据的支持将会是ODPS面临的一大挑战。因为ODPS最早是基于阿里巴巴内部的业务成长起来的,而阿里巴巴分析的数据主要是交易数据和用户行为数据——这些数据大多都是结构化和半结构化的。这决定了,ODPS最初开放的服务面向的也都是结构化数据,比如无人分析、数据仓库、BI(商业智能)分析。而随着更多的企业使用ODPS,一定会有大量非结构化的数据放到这个平台上来,这将会是ODPS接下来要探索的很重要的一个方面。
另外则是数据的传输问题。阿里云官方的建议是直接使用ODPS的数据仓库,这样就可以直接调用ODPS之上的分析工具;但如果客户的数据并不存储在阿里云上,也想使用ODPS对数据进行分析,则只能通过API使用https协议传输——这意味着网络传输不得不受到网速的限制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26