京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从另一个视角看大数据
大数据之所以在我国引起如此大的关注,也是由于在传统文化理念中,“大概齐、差不多”的习惯深入人心,在公共决策、商业选择、个人行为中充斥着“拍脑袋”现象。
大数据是当下最时髦的话题之一,依照迈尔·舍恩伯格及库克在《大数据时代》的描述,数据被定义为不用随机分析法(抽样调查)而运用所有数据的方法。除了对于社会组织、公共服务、人们生活的重大影响之外,这一热潮背后的关注焦点,其实还是商业模式,即相关数据仓库、数据安全、数据分析、数据挖掘等围绕大数据的商业价值利用。
大数据之所以在我国引起如此大的关注,也是由于在传统文化理念中,“大概齐、差不多”的习惯深入人心,在公共决策、商业选择、个人行为中充斥着“拍脑袋”现象。正如历史学家黄仁宇在《赫逊河畔谈中国历史》所论述的那样,“西欧和日本都已以商业组织的精神一切按实情主持国政的时候,中国仍然是亿万军民不能在数目字上管理。”当然,这种模糊管理下的信息不对称,亦成为另外一种既定利益格局的存在基础。正因为此,当信息爆炸时代快速来临之时,对数据信息的渴望迅速在社会不同层面体现出来。据报,汪洋副总理就曾向广东财政厅干部推荐涂子沛写的《大数据》。
要论大数据的历史,或可追溯到19世纪末。美国统计学家赫尔曼·霍尔瑞斯为统计1890年的人口普查数据,发明了一台电动器来读取卡片上的洞数,该设备用一年时间完成了原本需耗时八年的人口普查,由此开启了数据处理的新纪元。进入21世纪,随着信息技术、云计算的高速发展,以及社交网络的普及,大数据被赋予了全新含义。应该说,基于数据化严重不足的大背景,在我国经济社会发展中强调大数据的作用,其积极意义非常深远,但与此同时,也要避免走向另外的某些极端,这就需要相应的冷思考。
比如,在大数据的推动者之中,一方面各类新兴互联网企业成为主力,另一方面传统企业也在着力跟随,其根本动力都是在于发掘新的商业利润来源,以弥补我国经济转型期的投资迷茫。在此过程中,对于个人的利益和诉求还缺乏合理的认识和定位。虽然大数据对于进一步理解和服务消费者起到重要作用,但从其他侧面看,无序的、低效的、无用的信息轰炸,往往给个人带来“信息过度”的不佳体验,而在数据成为财富的狂热驱动下,对于个人信息权利的侵犯几乎无处不在,尤其在我国缺乏个人信息保护规则的条件下,数据渴望和采集很可能成为激怒消费者的动因,且拉大了与真正的消费者主权社会的距离。
另外,更值得我们思考的是,如果信息产生基础或其环境存在问题,那么大数据的技术是否会造成更大的信息扭曲?从金融市场的角度看,大数据在深刻改变高频交易方式、信贷风险判断等环节同时,也带来了其他潜在风险的积累,如信息误读造成的市场波动突然被放大,以及难以监管的新型金融产品创新等等。可以说,在诸多领域都缺乏法律游戏规则约束,更缺乏职业道德约束的情况下,如果初始数据就存在问题,那么在此基础上的大数据分析手段,恐怕就只有“南辕北辙”的效果了。从大处说,各类统计数据造假历年来都是被舆论广泛质疑的焦点;从小处说,在很多领域数据失真已经成为常态。例如,据5月7日的《北京青年报》报道,由于受到利益绑架,北京地区的电视收视率数据或许已被污染。再如,我国赴海外留学生的国内学校成绩,就一度存在许多造假行为,直到欧美出现更严厉的制约才有所收敛。无论如何,一旦数据本身的问题太多,则带来的只有大数据的灾难。
我们知道,信息不对称的后果是扭曲了市场机制的作用,误导了市场信息,造成市场失灵。如果处在普遍的信息数据缺乏状态下,经济行为的不确定性也会增加,往往会降低市场效率。反之,是过犹不及,即便是在上世纪末所谓“信息爆炸”年代,也远不如当前阶段如此快速的信息积累。据统计,互联网上的数据每两年翻一番,而全球绝大多数数据都是最近几年才产生的。面对似乎逐渐“供大于求”的数据,如何找到有用的信息,成为利用大数据的关键问题。正如美国颇有影响力的预测专家纳特·西尔弗在《信号与噪声》一书中所分析的:“如果信息的数量以每天250兆亿字节的速度增长,其中有用的信息肯定接近于零。大部分信息都只是噪声而已,而且噪声的增长速度要比信号快得多。”由此看来,当数据信息铺天盖地而来之时,也可能距离真相越来越远。在现实中,对于一哄而上追求大数据的企业来说,也需要冷静思考下,在信息过度充分的年代,如何把数据真正变成真正的价值?
大数据如同一把双刃剑,正如不少好莱坞电影中政府对公众无所不在的监控,大数据的爆炸,也让现代人对个人信息安全失控充满了担忧。斯诺登和棱镜事件,进一步在全球范围的国家之间提出这个疑问。一方面,在不可避免地拥抱大数据时代之前,可能更需要加强对其潜在风险的认识,做好基础数据净化、个人信息保护、国家信息安全等基础性建设;另一方面,大数据既可用来推动新商业模式演进,也可用来通过“抓坏蛋”,间接促进社会信息环境的完善,从而夯实大数据根基。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16