京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师在物联网的哪个环节?
物联网(Internet of Things)用最简单的一句话就是各种感知器的广泛应用,具体来说,要实现“物-物互联”,主要分三个层次:
(1)感知层:由各种传感器以及传感器网关构成,包括二氧化碳浓度传感器、温度传感器、湿度传感器、二维码标签、RFID 标签和读写器、摄像头、GPS等感知终端。感知层的作用相当于人的眼耳鼻喉和皮肤等神经末梢,它是物联网识别物体、采集信息的来源,其主要功能是识别物体,采集信息。
(2)网络层:由各种私有网络、互联网、有线和无线通信网、网络管理系统和云计算平台等组成,相当于人的神经中枢和大脑,负责传递和处理感知层获取的信息。
(3)应用层:物联网和用户(包括人、组织和其他系统)的接口,它与行业需求结合,利用云计算、模式识别等智能技术对数据进行处理分析。
比如,监测飞机喷气引擎中一些不易察觉的警报信号,以此来预测哪些设备需要进行维护,甚至能提前一个月预测其维护需求,预测准确率达到70%,这可以极大减少飞行延误。这也是跟我们数据分析师最相关一层。
聚焦在应用层,看数据分析师如何发挥他们的“雄才大略”:
刚刚说的飞机喷气引擎的例子,这个实际上是GE(通用电气)机器学习专家AnilVarma正在做的事情。这些传感器将温度、压力和电压等数据实时传输回GE进行分析。虽然资料中没有提及具体的算法,但数说君认为应该是:结合业务经验,构建一定的模型或者指标,监测“危险”信号,预测未来一段时间内的维护需求——一个典型的数据分析师的任务。
实际上,GE在这一块已经相当领先,涉及各个领域,比如GE与加拿大一家电力公司通过分析卫星影像、天气地图当地停电记录等数据预测树木修剪的热点地区(掉落的树枝是雷电导致停电的主要原因之一)。
GE全球董事长伊梅尔特戏言:“GE昨天还是一家制造业公司,一觉醒来已经成为一家软件和数据公司了。”
那么GE对数据人才是怎样的?数说君在GE的官网上搜集了一些人才需求,以数据科学家 Data Scientist为例,这个职位在上海:
职位:
The Data Scientist will work in the Digital Foundry addressing statistical, machine learning and data understanding problems in a commercial technology and consultancy development environment. In this role, you will contribute to the development and deployment of modern machine learning, operational research, semantic analysis, and statistical methods for finding structure in large data sets.
主要涉及机器学习、运筹学、语义分析、大数据的数据结构方法等。
要求:
Basic Qualifications:
Bachelor’s Degree in a “STEM” major (Science, Technology, Engineering, Mathematics)
Minimum 2 years analytics development in a commercial setting
Demonstrated skill in the use of one or more analytic software tools or languages (e.g., SAS, SPSS, R, Python)
Demonstrated skill at data cleansing, data quality assessment, and using analytics for data assessment
Demonstrated skill in the use of applied analytics, deive statistics, and predictive analytics on industrial datasets
简单而言就是STEM专业(科学、技术、工程、数学)的学士以上,至少2年工作经验、掌握统计软件如R、SAS、SPSS、Python,有数据清洗、数据质量评估和分析的技能,可以对工业数据进行应用分析、描述统计以及预测分析等。
我们非常熟悉的SAS公司,也在物联网上进行了布局,实际上,SAS已经推出了专门的物联网分析产品。
SAS®物联网分析(SAS® Analytics for IoT)是在SAS成熟的数据分析产品基础上组合而成的全新套装产品,成功将SAS大数据分析的核心技术应用到了物联网连接的传感器和设备上。SAS物联网分析结合了流技术、数据分析和其他领域专长,把物联网数据转化为深刻洞察。
例如SAS可向企业提供稳健的维保需求预测方案,实现当即制定个性化产品,促使企业采取具有商业价值的行动等。
SAS物联网分析可以帮助企业解读快速流转并积累的数据,协助客户根据数据信息做出正确决策。由此产生的收益,例如安全性和产品质量的提高、人身伤害的减少等,能转化为更有益的利润。制造业、能源、零售业等相关行业都可以从SAS®物联网分析中获益。
科尼集团是一家工业起重机制造商,利用SAS,他们分析设备和客户数据,以及使用情况、撞击数据,把大数据同可靠性分析与模拟相结合,提高预测能力。
另外在农业上,我们也介绍过在畜牧场、农场如何使用传感器进行监测分析的例子(Farmeron:农场主的数据分析工具;德强农场—一家国内大数据农场)。
从以上内容,我们稍稍提炼一下数据分析师在物联网大数据的实践技能:
1)语义引擎、多元数据融合技术
物联网中数据的存储方式、组织结构以及时效性呈现出多样性。我们需要一系列的工具去解析、提取、分析数据,语义引擎需要被设计成能够从“文档”中智能提取信息。
2)海量数据挖掘技术
MapReduce架构可以作为海量数据资源知识元挖掘算法的统一处理机制,在Hadoop分布式系统平台上,能够实现分类、聚类和关联知识挖掘等算法,深入数据内部,挖掘价值,这些算法不仅要处理大数据的量,也要处理大数据的速度。
3)可视化分析
近随着处理的数据量越来越大,可视化的需求越高越高。对体量大、多源的物联网数据而言,可视化呈现是一个非常重要的技能。
4)预测分析能力
预测是物联网的一个重要应用,无论是农业产量、物流,还是工业设备维护,预测效果直接显像在应用层面。
12年GE发布的报告显示,每提高1%的燃油效率,航空业每年能节省20亿美元,而能源行业则能节省40亿美元。到2020年全球工业互联网年产值将达到2250亿美元,大大超越消费物联网1700亿美元的产值。
最后,物联网是个陌生又有点熟悉的行业,对我而言更多的是一个学习的态度,非常非常希望能有这方面的专家赐文指导。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16