京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师?架构师?大数据时代的热门职业!
大数据已是当下信息时代一个非常热的概念,大数据时代到来,将给人才发展带来哪些机会?谁将是未来最热门的人才?大数据时代的热门职业都有哪些?让我们一起来看看吧:
说起大数据,可能你还会觉得云里雾里,实际上,大数据就发生在你我身边,一起先来点入门级的:
你的通话记录、上网记录,会留在三大电信运营商那里;你的身份、家庭房产信息,会通过刷信用卡而被银行知晓;你去了哪里,现在哪里,又会通过手机定位系统而泄露,百度、腾讯、阿里是目前大数据的主导拥有者和使用者;政府也掌握相应的大数据。通过这些数据都勾勒出你的基本面貌,也就是说,你的一举一动尽在大数据掌控中。亲们,有木有觉得害怕?大数据已深入到日常生活的诸多领域,在许多行业发挥着重要作用。
大数据到底有什么用?
大数据最重要的功能,是能把未来一些不确定性的东西准确地预测出来。
举个例子——2008年,谷歌的一支研发团队利用在网上收集到的海量个人搜索词汇数据,赶在政府流行病学家之前两星期预测了甲型H1N1流感的暴发。这样的事情在以前是不可想象的,掌握了大数据后,谷歌就做到了。
大数据时代,人们的思维方式不再是原有的因果关系,而是相关关系,它的核心是预测,并且不是基于随机样本,而是全体数据,利用计算机技术强大的处理和分析能力为人们提供决策。
大数据时代最需要什么样的人才?
全球大数据人才荒
美国软件就业市场调查,Big Data(大数据)和 Cloud Computing(云计算)是目前市场上最迫切需要的人才。研究机构Gartner更预测,2015年全球将有440万个巨量资料相关之IT工作职缺,但目前尚未有真正以巨量资料为背景的学科,因此人才缺口恐达三分之二。
“埃森哲”开展的一项调查,研究了美国、中国、印度、英国、日本、巴西和新加坡对数据分析人才的需求发现,到2015年,除中国之外都面临胜任数据分析科学家的净短缺。中国因为需求不足似乎还出现了少量的过剩。
赋予数字意义的能力
美国USNEWS预测2020年十大最佳职业,第一名即是与巨量数据有关的数据运算人员(数据科学家)。
为了要精算、推演出海量数据库得到结论,除了需要IT、统计背景的人才外,更需要产业专家赋予数字意义,一窥其中奥秘。专家表示,虽说大数据人才时代来临,但别忘了大数据人才市场里看中的是“赋予数字意义的能力”,算法、数学模型可以只学概念,但解读数据的本事却是无可取代的。
政府和企业的高层管理者
专家提出,一提大数据时代,就认为我们最需要数据技术人才,比如计算机人才和数学工程人才,也是一种错觉。
我们确实很需要数据技术人才,但真正能够帮助政府和企业转变思维、应对大数据挑战的人才不是一个来自IT部门的技术专家,而是政府和企业的高层管理者。对目前的中国来说,对大数据管理人才需求的迫切性要超越对技术人才需求的迫切性。政府和企业的领导者,也要学习用数据思考、说话和管理。
大数据时代的热门职业
下面小编为您介绍大数据时代下的热门职业。不仅具有高收入的特点,也有令人羡慕的时代属性,而且随着大数据的发展,未来会有更多的热门职业涌现。
数据规划师
在一个产品设计之前,为企业各项决策提供关键性数据支撑,实现企业数据价值的最大化,更好地实施差异化竞争,帮助企业在竞争中获得先机。
数据工程师
大数据基础设施的设计者、建设者和管理者,他们开发出可根据企业需要进行分析和提供数据的架构。同时,他们的架构还可确保系统能够平稳运行。
数据架构师
擅长处理散乱数据、各类不相干的数据,精通统计学的方法,能够通过监控系统获得原始数据,在统计学的角度上解释数据。
数据分析师
职责是通过分析将数据转化为企业能够使用的信息。他们通过数据找到问题,准确地找到问题产生的原因,为下一步的改进找到关键点。
数据应用师
将数据还原到产品中,为产品所用。他们能够用常人能理解的语言表述出数据所蕴含的信息,并根据数据分析结论推动企业内部做出调整。
数据科学家
大数据中的领导者,具备多种交叉科学和商业技能,能够将数据和技术转化为企业的商业价值。
看完了以上的内容,如果你也想成为炙手可热的大数据人才,现在就开始努力吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11