
【gloomyfish】Box zoom on Category Plot in JFreeChart
Background:
currently JFreechart did not support domain axis zoom with category plot, the domain and value axis is zoomable only for XYPlot, however when category dataset contains huge categories while user could not select some categories to view by box zoom. the category plot is becoming un-usable one for user. obviously user would like to see box zoom with category plot.
Summary:
from box zoom on XYPlot in JFreechart, i read all relevant source code about zooming in JFreeChart and i found that there is a way to support box zoom on category plot by following steps:
a. support drawing the zoom rectangle in category data area (plot)
b. identify the domain axis and each category start point on domain axis.
c. measure the each category start point with zoom box
d. remove any categories if the start coordinate value is out of zoom rectangle.
Basic Design:
in order to support box zoom on category plot, we need to overwrite following methods which has been implemented in ChartPanel by JFreeChart:
1. mousePressed() - record the start zoom point
2. mouseDragged() - draw zoom box rectangle on category plot
3. mouseReleased() - zoom in the categories which is selected in rectangle.
4. paintComponent() - supporting to draw zoom rectangle
Run Result:
mouse selected rectangle - box zoom
zooming the rectangle
Code Implementation:
package test.it; import java.awt.Color; import java.awt.Font; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Paint; import java.awt.event.MouseEvent; import java.awt.geom.Point2D; import java.awt.geom.Rectangle2D; import javax.swing.JPanel; import javax.swing.JPopupMenu; import org.jfree.chart.ChartPanel; import org.jfree.chart.ChartRenderingInfo; import org.jfree.chart.JFreeChart; import org.jfree.chart.axis.CategoryAxis; import org.jfree.chart.axis.NumberAxis; import org.jfree.chart.plot.CategoryPlot; import org.jfree.chart.plot.PlotOrientation; import org.jfree.chart.plot.Zoomable; import org.jfree.chart.renderer.category.BarRenderer; import org.jfree.data.category.CategoryDataset; import org.jfree.data.category.DefaultCategoryDataset; import org.jfree.experimental.chart.plot.CombinedCategoryPlot; import org.jfree.ui.ApplicationFrame; import org.jfree.ui.RefineryUtilities; /** * A demo for the {@link CombinedCategoryPlot} class. */ public class CombinedCategoryPlotDemo1 extends ApplicationFrame { /** * */ private static final long serialVersionUID = 8114720685282689420L; /** * Creates a new demo instance. * * @param title the frame title. */ public CombinedCategoryPlotDemo1(String title) { super(title); JPanel chartPanel = createDemoPanel(); chartPanel.setPreferredSize(new java.awt.Dimension(500, 270)); setContentPane(chartPanel); } /** * Creates a dataset. * * @return A dataset. */ public static CategoryDataset createDataset2() { DefaultCategoryDataset result = new DefaultCategoryDataset(); String series1 = "Third"; String series2 = "Fourth"; String type1 = "Type 1"; String type2 = "Type 2"; String type3 = "Type 3"; String type4 = "Type 4"; String type5 = "Type 5"; String type6 = "Type 6"; String type7 = "Type 7"; String type8 = "Type 8"; result.addValue(11.0, series1, type1); result.addValue(14.0, series1, type2); result.addValue(13.0, series1, type3); result.addValue(15.0, series1, type4); result.addValue(15.0, series1, type5); result.addValue(17.0, series1, type6); result.addValue(17.0, series1, type7); result.addValue(18.0, series1, type8); result.addValue(15.0, series2, type1); result.addValue(17.0, series2, type2); result.addValue(16.0, series2, type3); result.addValue(18.0, series2, type4); result.addValue(14.0, series2, type5); result.addValue(14.0, series2, type6); result.addValue(12.0, series2, type7); result.addValue(11.0, series2, type8); return result; } /** * Creates a chart. * * @return A chart. */ private static JFreeChart createChart() { CategoryDataset dataset2 = createDataset2(); NumberAxis rangeAxis2 = new NumberAxis("Value"); rangeAxis2.setStandardTickUnits(NumberAxis.createIntegerTickUnits()); CategoryAxis domainAxis = new CategoryAxis("Category"); CategoryPlot plot = new CategoryPlot(dataset2, domainAxis, new NumberAxis("Range"), new BarRenderer()); JFreeChart result = new JFreeChart( "Combined Domain Category Plot Demo", new Font("SansSerif", Font.BOLD, 12), plot, true); return result; } /** * Creates a panel for the demo (used by SuperDemo.java). * * @return A panel. */ public static JPanel createDemoPanel() { JFreeChart chart = createChart(); return new ChartPanel(chart){ /** * */ private static final long serialVersionUID = -4857405671081534981L; private Point2D zoomPoint = null; private Rectangle2D zoomRectangle = null; private boolean fillZoomRectangle = true; private JPopupMenu popup; private Paint zoomOutlinePaint = Color.blue; private Paint zoomFillPaint = new Color(0, 0, 255, 63); public void mousePressed(MouseEvent e) { if (e.isPopupTrigger()) { if(popup == null) { popup = createPopupMenu(true,true,true,true); } if (this.popup != null) { displayPopupMenu(e.getX(), e.getY()); return; } } PlotOrientation orientation = ((Zoomable)this.getChart().getPlot()).getOrientation(); System.out.println("Orientation --->> " + orientation.toString()); if(orientation == PlotOrientation.HORIZONTAL) { return; } if (this.zoomRectangle == null) { Rectangle2D screenDataArea = getScreenDataArea(e.getX(), e.getY()); if (screenDataArea != null) { this.zoomPoint = getPointInRectangle(e.getX(), e.getY(), screenDataArea); } else { this.zoomPoint = null; } } } private Point2D getPointInRectangle(int x, int y, Rectangle2D area) { double xx = Math.max(area.getMinX(), Math.min(x, area.getMaxX())); double yy = Math.max(area.getMinY(), Math.min(y, area.getMaxY())); return new Point2D.Double(xx, yy); } public void mouseReleased(MouseEvent e) { if (e.isPopupTrigger()) { if(popup == null) { popup = createPopupMenu(true,true,true,true); } if (this.popup != null) { displayPopupMenu(e.getX(), e.getY()); zoomRectangle = null; return; } } if(this.getChart().getCategoryPlot().getDataset().getColumnCount() < 2) { repaint(); zoomRectangle = null; return; } if (zoomRectangle == null) { // do nothing } else { // do something here. zoom rectangle with data System.out.println("fucking........"); System.out.println("reset dataset here"); CategoryDataset dataset = this.getChart().getCategoryPlot().getDataset(); System.out.println("category count = " + dataset.getColumnCount()); System.out.println("category type = " + dataset.getRowCount()); Comparable[] rowKeys = new Comparable[dataset.getRowCount()]; rowKeys[0] = dataset.getRowKey(0); rowKeys[1] = dataset.getRowKey(1); Comparable[] columnKeys = new Comparable[dataset.getColumnCount()]; for(int i=0; i<columnKeys.length; i++) { columnKeys[i] = dataset.getColumnKey(i); } double[] endValueAxis = new double[dataset.getColumnCount()]; double[] startValueAxis = new double[dataset.getColumnCount()]; double minX = zoomRectangle.getBounds2D().getMinX(); double maxX = zoomRectangle.getBounds2D().getMaxX(); CategoryPlot plot = this.getChart().getCategoryPlot(); ChartRenderingInfo info = this.getChartRenderingInfo(); Rectangle2D dataArea = info.getPlotInfo().getDataArea(); CategoryAxis categoryaxis=this.getChart().getCategoryPlot().getDomainAxis(); for(int i=0; i<dataset.getColumnCount(); i++) { endValueAxis[i] = categoryaxis.getCategoryEnd(i, dataset.getColumnCount(), dataArea, plot.getDomainAxisEdge()); startValueAxis[i] = categoryaxis.getCategoryStart(i, dataset.getColumnCount(), dataArea, plot.getDomainAxisEdge()); } for(int i=0; i<endValueAxis.length; i++) { if(minX > startValueAxis[i] || maxX < startValueAxis[i]) { DefaultCategoryDataset defaultDataset = (DefaultCategoryDataset)dataset; defaultDataset.removeValue(rowKeys[0], columnKeys[i]); defaultDataset.removeValue(rowKeys[1], columnKeys[i]); } } } zoomRectangle = null; } public void mouseDragged(MouseEvent e) { // if no initial zoom point was set, ignore dragging... if (this.zoomPoint == null) { return; } Graphics2D g2 = (Graphics2D) getGraphics(); Rectangle2D scaledDataArea = getScreenDataArea((int) this.zoomPoint.getX(), (int) this.zoomPoint.getY()); double ymax = Math.min(e.getY(), scaledDataArea.getMaxY()); double xmax = Math.min(e.getX(), scaledDataArea.getMaxX()); this.zoomRectangle = new Rectangle2D.Double(this.zoomPoint.getX(), this.zoomPoint.getY(), xmax - this.zoomPoint.getX(), ymax - this.zoomPoint.getY()); repaint(); g2.dispose(); } public void paintComponent(Graphics g) { super.paintComponent(g); Graphics2D g2 = (Graphics2D) g.create(); drawZoomRectangle(g2, false); g2.dispose(); } private void drawZoomRectangle(Graphics2D g2, boolean xor) { if (this.zoomRectangle != null) { if (xor) { // Set XOR mode to draw the zoom rectangle g2.setXORMode(Color.gray); } if (this.fillZoomRectangle) { g2.setPaint(this.zoomFillPaint); g2.fill(this.zoomRectangle); } else { g2.setPaint(this.zoomOutlinePaint); g2.draw(this.zoomRectangle); } if (xor) { // Reset to the default 'overwrite' mode g2.setPaintMode(); } } } }; } /** * Starting point for the demonstration application. * * @param args ignored. */ public static void main(String[] args) { String title = "Combined Category Plot Demo 1"; CombinedCategoryPlotDemo1 demo = new CombinedCategoryPlotDemo1(title); demo.pack(); RefineryUtilities.centerFrameOnScreen(demo); demo.setVisible(true); } }
I just adding some codes in the category demo program with JFreeChart, the code implementation need to be improved in future.
Drawback:
could not restore to original dataset since i just removed the categories, one way is to implement this like this:
just take back original dataset when there is only one category in plot.
Discussion:
...
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12