
大数据分析未来汽车市场发展商机
大家现在言必称大数据,但拿出来展示的不过是一个个网站的单平台数据。我的一个总体感觉就是,互联网大数据,看上去很美,但实际上更像一个野蛮生长的江湖,一个个遥不可及的孤岛。尼尔森眼中的大数据并不是单平台上的一些浏览和用户数据,而是要体现所有消费者在所有平台上的全量数据。大数据的成功应用取决于几个必要条件,第一要共享共赢,数据实现共享,才能发挥它的最大效益。第二,大数据的应用必须要有科学的建模。第三,必须要有丰富的消费者洞察的经验和能力,才能做到把这些大数据为其所用。
基于尼尔森的跨平台大数据,我们把整个中国的全部人口分成了28个细分人群。这当中我们发现有六类用户会是在新能源车和智能汽车上成为第一个吃螃蟹的人。他们虽然处在不同的生活阶段,有的单身,有的成家,有的事业有成,收入层次也不一样,但却对新技术、新风格和新形象有着强烈的共性追求。这种特点,只有运用海量数据细分的和画像才能发现。想知道他们在哪儿吗,运用地理位置数据库和人群匹配技术,不但可以发现他们集中在哪些城市,而且可以在地图上进行定位。例如,要找中年以上的金领格调型和管理精英型吗,来北京吧,这里最多;而在广州和成都,更为年轻的白领中坚与体面理性族的比例却更高。
造什么样的车子?
电动汽车市场的空白机会在哪里?我觉得在当前销量主力的A00和A0级车之外,补贴前零售价格15万到20万元的A级车,在B级轿车的25万到30万元的中高端市场,还有高端的50万到60万元的市场,还是有很大的空白的机会,未来的新品开发要充分关注一下这三个细分市场。在Uber,有一条不成文的“十倍法则”,你做的事要比别人好十倍;如果只比别人好一点儿,就不要浪费生命去做。在尼尔森,也有一个”突破性创新“法则,那就是符合“相关、持久和独特”三个特性,只要在消费者眼中满足这三个特性,一款新品就能在市场上脱颖而出。“相关”,就是要找到适合消费者购买力的价位和他们出行需求的车身形式;“持久”,就是能够不断地去迭代车身设计,快速迭代车上的智能交互系统,常用常新;“独特”,就是让自己的设计有排他性、独特性。
如何打造下一代汽车?
创新在产品发展的各个阶段都有可能失败。尼尔森在全球曾经帮助各个企业测试和评估了210,000个新开发的产品概念,而追踪他们的上市表现,发现只有2%的产品获得了长久的成功。我认为,成功的创新一定要从消费者的购买动机和他的用车场景出发。我们曾经为一款车载导航系统做过测试,通过电商网站流量数据的分析,发现消费者真正关心的是它的电子地图精准度、实时路况更新和价格,而不是厂家自以为很棒的语音与行车记录功能。
大数据能不能帮我们在设计上也做一些未来感的新车?用AlphaGo式的机器学习技术来做并不难。如果有9种外观设计,13种仪表盘的设计,30种的座椅布置加上前大灯,那就是10万种以上的设计组合。亲,你要找多少人,用多少双眼睛才能从里面挑出我们大家都喜欢的TOP3的造型?而运用大数据筛选和机器学习的方法,消费者在网络上就像玩电脑游戏一样,只需对不同设计元素的随机组合一对一的点击选择,可以让在短短几个小时之内,把十几万种、几十万种的造型的可能性,筛选聚焦成就是三个最优概念。这种智能设计优化器的软件和方法,可不是科学幻想哦,尼尔森已经用它为几百个品牌提供了新品设计,让消费者不动声色地告诉你什么是他脑海中的“前卫”、“梦幻”与“极致”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08