
数据的四个特征
最近的确有些忙,博客也荒芜了许久。很多博友问起我,怎么不见更新了?我心怀歉意。说实话,很久不写东东,我心里也感觉空空的。还是要继续写下去,承蒙大家关注,我没有理由懈怠。
今天我们聊点什么呢?
聊聊数据吧。我们总是在谈数据分析,那么到底什么是数据,数据有什么特征呢?这个问题虽基础却重要。
这里我们所说的数据,仅指应用于企业运营的市场信息。它是认识事物的中间环节,是事物的表面特征,其作用在于消除事物的不确定性。它至少具有以下四个基本特征。
一、时效性
所谓时效性是指数据的发生和运用要有个提前期,失去时效性,就失去了潜在机会。
举个例子,以前在广州有个大厦,它对数据的时效性运用的就很好。据说有一年,它的经理和别人聊天,人家无意间提起说那年春天广州的雨水将特别大,于是他特意去了广州气象台证实,证实后,他开始调查,发现深圳一家厂子里积压着20万多把雨伞。当时正是11月份,旱季,这家厂子压着20万多把雨伞早就想出手,所以这个大厦的经理就去了深圳,以极低的价格就把雨伞盘进来了。结果那年广州的春天来得特别早,一过春节,这雨哗哗就下起来了,他趁机20多万把雨伞往出卖,结果一销而空。这就是利用了信息的时效性。
简单吗?很简单,只需要到气象台问一下,但是,有多少企业会问呢?其实并不多,因为很多企业就没有提前获取数据的意识。经常是等到下雨了再进雨伞,那就没买卖做了。
数据要具有时效性,或者说数据分析要有预见性,因此,大家在采集数据的时候,要注意数据的时效性,要具备用现在的数据预测未来市场的走向的意识。
二、分散性
数据的分散性,具体表现在两个方面。
1、没有固定发生地
数据没有固定发生地,因此,需要多渠道采集数据,除了上网、图书馆查资料、还要留意电视、杂志等媒体的信息,关注统计局、行业协会、研究机构的数据或者直接做市场调研。
2、零散分布,相互关联才完整
数据是零散的,真正能还原数据的完整性,并充分利用数据的,都是勤于思考,努力寻找数据关联性的人。
在旧社会的解放区,人人都听到,河北省出了一个白毛仙姑,但是谁也没有去琢磨,当时只有20岁的贺敬之琢磨出来了:这叫做旧社会把人变成鬼,新社会把鬼变成人。于是他就写出了不朽的名著叫做《白毛女》,正可谓“人人之所见、人人所未思”。
三、概率性
什么是概率性?简单理解就是看似结果不确定的事情,多次重复,就会显示出一定的规律性。
比如我们抛硬币。抛5次、10次,到底有几次正面向上不好说,但若抛几百次,几千次,正面向上的可能性就稳定在50%左右。
有一个生产装汽水、装啤酒的塑料箱的小厂厂长,了解了数据的概率性,就把北京邮政编码本找来,找到北京130个单位,发了130封信,结果就回来1封,让他拿着样品过去看看,概率够低的。这个厂长怕别人搞不好,就自己夹着箱子去了。这家单位在4楼,厂长把箱子递过去,那老兄看都没看,一推窗户,‘磅’的一声,就给扔出去了。然后那老兄就往下跑,这厂长就在后面追,到了楼下,一看这箱子,一点没坏!那老兄说:“行!这箱子挺结实的,定货!”半年的买卖就有了。玩的就是概率。
数据的概率性告诉我们:成功=努力+等待。
四、再创性
所谓再创性是指我们所看到的数据只是一种现象和启示,不同的人会得出不同的结论。而要想透过现象看本质,需要用发展的眼光看问题,通过深入的分析,找出隐藏在市场现象背后的机会。
例如,二战后,松下幸之助开始研制一个非常不起眼的家庭用电机,好多人嘲笑他,说电机都是工厂用的,你这电机家庭干什么使呢。但是,松下幸之助看到了家用电机的发展,他说:‘现在是零,将来就是无限。’用发展的眼光看问题,才能再创性地挖掘机会。
再讲个故事:有甲、乙两个推销员,同时到非洲的一个岛国卖鞋子。这个岛国里人人都光着脚丫。甲推销员一见到他们都不穿鞋,于是认为鞋子在这里没有销路;而乙推销员将数据进行再创,看到他们不穿鞋,于是拿着鞋子来做调查,经调查发现:这里的人之所以不穿鞋,是因为他们的脚都特别宽,而市面上的鞋太窄,他们穿不进去。于是他建议公司生产出专门适合这个岛国的鞋子。此外,他还把尺寸合适的鞋子送给当地的酋长,酋长一穿鞋,感觉舒服极了,而老百姓一看酋长都穿鞋了,他们也想穿。等到老百姓也想穿,就有市场了,原来都不穿鞋,现在人人都要穿鞋,于是乙推销员让鞋子很有销路。这个故事说明,数据只是现象和启发,只有深入的分析,才能再创性地挖掘机会。
以上就是数据的四个特征:时效性、分散性、概率性、再创性。
了解数据的四个特征,对于我们的数据工作具有启发。例如,数据采集就要充分考虑到数据的这四个特征:
基于再创性,要对采集到的数据信息深入地分析和解读
数据除了这四个特征外,还有没有其他的特征?很想听听你的想法:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08