
数据分析之_离群值(Outliers) BoxPlot_数据分析师
一:什么是Outliers
Outliers是统计学专业术语,是指相比一组数据中的其它数据的极限值
二:极限值意味什么
1. 决定哪些值是Outliers是一个主观行为,有一些基准数据来决定是否一个值是一个Outliers,这些基准是任意选择的,比如P<=0.5就是一个任意选择的基准
2. 一个基准是用BoxPlot来决定适度离群值(mild Outliers)和极限离群值(extreme Outliers),适度离群值是任何值1.5倍大于基于剩下所有的值的IQR,极限离群值是任何值3倍大于剩下所有的值的IQR,IQR(Interquartile Range)代表四分位数间距,是这些值中的50%中间值,分别是Q1-25%, Median-50%,Q3-75%, IQR=Q3-Q1
三:使用Box Plot来发现Outliers
一个典型的Box Plot是基于以下五个值计算而来的
a. 一组样本的最小值
b. 一组样本的最大值
c. 一组样本的中值
d. 下四分位数(Lower Quartile / Q1)
e. 上四分位数(Upper Quartile / Q3)
根据这五个值构建出来基本的Box Plot,某些图形软件还会显示平均值,IQR= Q3 – Q1
显然超出上下四分位数的值可以看做为Outliers。我们通过眼睛就可以很好的观察到这些Outliers值的点。
一个显示适度和极限Outliers值的Box plot显示如下:
四:示例说明及JfreeChart的实现
假设一组数据为:2,4,6,8,12,14,16,18,20,25,45
中值 Median = 14
Q1-下四分位数(11 * 0.25 = 3) = 7
Q3-上四分位数(11 * 0.75 = 9) =19
IQR(Q3 – Q1) = 12
1.5 * IQR = 18
最小值(6 – 1.5 * IQR)= 2
最大值(20 + 1.5 * IQR)= 25
很显然值45是一个适度Outliers
对比的一组数据为:2,4,6,8,12,14,16,18,20,25,26
从图上可以看出Series0的数据存在Outliers,一个红色三角形已经表明
同样Series1的数据是一组非常好的数据,没有Outliers.
下面是Java源代码:
package com.dataanalysis.plots; import java.awt.Font; import java.util.ArrayList; import java.util.List; import org.jfree.chart.ChartPanel; import org.jfree.chart.JFreeChart; import org.jfree.chart.axis.CategoryAxis; import org.jfree.chart.axis.NumberAxis; import org.jfree.chart.labels.BoxAndWhiskerToolTipGenerator; import org.jfree.chart.plot.CategoryPlot; import org.jfree.chart.renderer.category.BoxAndWhiskerRenderer; import org.jfree.data.statistics.BoxAndWhiskerCategoryDataset; import org.jfree.data.statistics.DefaultBoxAndWhiskerCategoryDataset; import org.jfree.ui.ApplicationFrame; import org.jfree.ui.RefineryUtilities; public class BoxAndWhiskerDemo extends ApplicationFrame { /** * */ private static final long serialVersionUID = -3205574763811416266L; /** * Creates a new demo. * * @param title the frame title. */ public BoxAndWhiskerDemo(final String title) { super(title); final BoxAndWhiskerCategoryDataset dataset = createSampleDataset(); final CategoryAxis xAxis = new CategoryAxis("Type"); final NumberAxis yAxis = new NumberAxis("Value"); yAxis.setAutoRangeIncludesZero(false); final BoxAndWhiskerRenderer renderer = new BoxAndWhiskerRenderer(); renderer.setFillBox(false); renderer.setToolTipGenerator(new BoxAndWhiskerToolTipGenerator()); final CategoryPlot plot = new CategoryPlot(dataset, xAxis, yAxis, renderer); final JFreeChart chart = new JFreeChart( "Box-and-Whisker Demo", new Font("SansSerif", Font.BOLD, 14), plot, true ); final ChartPanel chartPanel = new ChartPanel(chart); chartPanel.setPreferredSize(new java.awt.Dimension(450, 270)); setContentPane(chartPanel); } /** * Creates a sample dataset. * * @return A sample dataset. */ private BoxAndWhiskerCategoryDataset createSampleDataset() { final int seriesCount = 2; final int categoryCount = 4; double[] data = null; final DefaultBoxAndWhiskerCategoryDataset dataset = new DefaultBoxAndWhiskerCategoryDataset(); for (int i = 0; i < seriesCount; i++) { if(i == 0) { data = new double[]{2,4,6,8,12,14,16,18,20,25,45}; } else { data = new double[]{2,4,6,8,12,14,16,18,20,25,26}; } for (int j = 0; j < categoryCount; j++) { final List list = new ArrayList(); for (int k = 0; k < data.length; k++) { list.add(new Double(data[k])); } dataset.add(list, "Series " + i, " Type " + j); } } return dataset; } /** * For testing from the command line. * * @param args ignored. */ public static void main(final String[] args) { final BoxAndWhiskerDemo demo = new BoxAndWhiskerDemo("Box-and-Whisker Chart Demo"); demo.pack(); RefineryUtilities.centerFrameOnScreen(demo); demo.setVisible(true); } }数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10