
大数据分析能力与企业市场份额关系
如今,大数据分析到底有多重要?McKinsey Global Institute(位于旧金山,是总部位于纽约的麦肯锡公司的研究机构)的高级合伙人Michael Chui(去年发布的麦肯锡大数据价值研究报告的作者之一)认为,在数据分析方面的能力将决定企业市场份额的得失。而且根据长久以来观察的结果,强者将会逾强(Whoever has will be given more,出自圣经之马太福音)。
“很快,我们就会看到那些领先的公司从中得到收益。”Chui说。海量数据的收集和分析已经在医疗健康领域得到了实际运用,麦肯锡在报告中预计该行业将从大数据中获得多达3000亿美元的收益,其中2000亿来自于相关成本的削减。
James Noga是Partners HealthCare System(位于波士顿的一家非营利性医疗机构)的CIO,他认为医疗行业已经认识到大数据分析能够极大地提升人类健康水平(即便不是最重要的因素)。“在我们这,即使只是基于一个很小的数据集,我们也能够通过分析来发现诸如Vioxx(一种已被发现有重大问题的药物)之类的问题”.
Noga认为尽管医院在大数据分析方面还不够成熟,但是情况正在一天天发生着变化。大量的数据正不断从医疗第一线汇集起来并经过整理和分析。Noga预计,随着人类基因组序列分析的成本降低,总有一天会给公众带来重大的福音。“无数的人正等着这些数据来进行分析利用。”Noga补充到。
数据蕴藏的新价值
Chui和Noga都参加了在马萨诸塞Cambridge举行的MIT斯隆CIO论坛,并作为数据专家阐述了大数据分析的诱人前景和面临的挑战。论坛由纽约时报的技术编辑Quentin Hardy主持,还包括The Corporate Executive Board Co.(CEB,位于华盛顿特区的一家咨询公司)的高级总监Shvetank Shah和Babson College(位于马萨诸塞Wellesley)的管理和信息技术教授Tom Davenport.
数据分析的用武之地绝不仅限于医疗健康领域(已经建立了一套规范的科学方法)或者消费品行业(已经拥有大量的用户数据)。比如,基于物流行业供应链而收集的海量数据也已经开始被用于对经济趋势的分析。
Hardy最近遇到了一个物流公司,其客户占了世界经济总量的3%到5%.该公司所拥有的数据对未来具有重要的指向作用,比如圣诞季的零售业状况和阿拉伯之春后约旦的走向。“我告诉他们,这些信息都可以在华尔街进行交易。”
Davenport是数据分析方面的高产作者,他最近专注在工业界并且预计大数据分析正给振兴美国制造业带来机遇。“通过数据分析,你可以及时发现问题并优化业务。”
流程和产品的数字化为企业开辟了另外一个天地。“我们可以毫无束缚地开始各种创新实践。”Chui说。
CIO在大数据分析中的角色
那么,在大数据分析中CIO应该承担什么样的角色呢?包括Partners Healthcare的Noga在内,至少有两位与会者强烈建议业务端来领衔分析工作。“我们有部分的责任,但分析是实实在在的研发工作,IT只是提供支撑。我们负责基础架构的事情 – 比如什么类型的计算适合放在公有云、私有云或者完全掌控的数据中心里。”Noga解释说:“就我自身来说需要理解分析技术,但是不应该成为责任人。分析事关企业战略,属于研发类型,应该由具备专业素养的人来担当数据科学家(data scientist)。”
这种看法的原因可以从一次相关的讨论结果(大数据和分析法学的挑战:数据聚积和偏好)中看出端倪:大数据时代的成功在于发现能够提升业务决策的模式。而这个过程中需要扎实的数学和技术功底,以及对业务的深刻认识。
Noga的看法得到了Davenport的赞同,后者以通用电子为例来加以说明。通用电子计划在投资超过10亿美元的全球软件中心(位于旧金山)招聘800位数据科学家。这些科学家将受聘于公司的研发部门。另外,惠普公司也在其战略规划团队中增加了数据科学家。“对此,我们给予完全正面的预期。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08