京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1. 理论知识
决策树分类算法的一般流程如下:一开始,所有的实例均位于根节点,所有参数的取值均离散化;根据启发规则选择一个参数,根据参数取值的不同对实例集进行分割;对分割后得到的节点进行同样的启发式参数选择分割过程,如此往复,直到(a)分割得到的实例集合属于同一类;(b)参数用完,以子集中绝大多数的实例类别作为该叶节点的类别。
基于熵的概念,我们可以得到参数选择的第一个规则:信息增益(Info Gain).信息增益的定义是分裂前的节点熵减去分裂后子节点熵的加权和,即不纯度的减少量,也就是纯度的增加量。参数选择的规则是:选择使信息增益最大的参数分割该节点。信息增益计算的算例如下图。
信息增益存在的问题时:总是倾向于选择包含多取值的参数,因为参数的取值越多,其分割后的子节点纯度可能越高。为了避免这个问题,我们引入了增益比例(Gain Ratio)的选择指标,其定义如下图所示。
增益比例存在的问题是:倾向于选择分割不均匀的分裂方法,举例而言,即一个拆分若分为两个节点,一个节点特别多的实例,一个节点特别少的实例,那么这种拆分有利于被选择。
为了克服信息增益和增益比例各自的问题,标准的解决方案如下:首先利用信息增益概念,计算每一个参数分割的信息增益,获得平均信息增益;选出信息增益大于平均值的所有参数集合,对该集合计算增益比例,选择其中增益比例最大的参数进行决策树分裂。
上面介绍的是基于熵概念的参数选择规则,另一种流行的规则称为基尼指数(Gini Index),其定义如下图。基尼系数在节点类别分布均匀时取最大值1-1/n,在只包含一个类别时取最小值0. 所以与熵类似,也是一个描述不纯度的指标。
基于基尼系数的规则是:选择不纯度减少量(Reduction in impurity)最大的参数。不纯度减少量是分割前的Gini index减去分割后的Gini index。基尼系数的特点与信息增益的特点类似。
过度拟合问题(Overfitting)
过度拟合问题是对训练数据完全拟合的决策树对新数据的预测能力较低。为了解决这个问题,有两种解决方法。第一种方法是前剪枝(prepruning),即事先设定一个分裂阈值,若分裂得到的信息增益不大于这个阈值,则停止分裂。第二种方法是后剪枝(postpruning),首先生成与训练集完全拟合的决策树,然后自下而上地逐层剪枝,如果一个节点的子节点被删除后,决策树的准确度没有降低,那么就将该节点设置为叶节点(基于的原则是Occam剪刀:具有相似效果的两个模型选择较简单的那个)。
Scalable决策树分类算法
这里介绍两个算法,一个是RainForest,其主要的贡献是引入了一个称为AVC的数据结构,其示意图如下。主要的作用是加速参数选择过程的计算。
另一个算法称为BOAT,其采用了称为bootstrap的统计技术对数据集进行分割,在分割的子数据集上分别构造决策树,再基于这些决策树构造一个新的决策树,文章证明这棵新树与基于全局数据集构造的决策树非常相近。这种方法的主要优势在于支持增量更新。
rpart(formula, data, weight s, subset, na. action = na. rpart, method, model= FALSE, x= FALSE,y= TRUE, parms, control, cost, . . . )
fomula 回归方程形式: 例如 y~ x 1+ x2+ x3。
data 数据: 包含前面方程中变量的数据框( data frame) 。
na.action 缺失数据的处理办法: 默认办法是删除因变量缺失的观测而保留自变量缺失的观测。
method 根据树末端的数据类型选择相应变量分割方法,本参数有四种取值: 连续型>anova; 离散型>class; 计数型( 泊松过程)>poisson; 生存分析型>exp。程序会根据因变量的类型自动选择方法, 但一般情况下最好还是指明本参数, 以便让程序清楚做哪一种树模型。
parms 用来设置三个参数:先验概率、损失矩阵、分类纯度的度量方法。anova没有参数;poisson分割有一个参数,先验分布变异系数的比率,默认为1;生存分布的参数和poisson一致;对离散型,可以设置先验分布的分布的概率(prior),损失矩阵(loss),分类纯度(split);priors必须为正值且和为1,loss必须对角为0且非对角为正数,split可以是gini(基尼系数)或者information(信息增益);
control 控制每个节点上的最小样本量、交叉验证的次数、复杂性参量: 即cp: complexity pamemeter, 这个参数意味着对每一步拆分, 模型的拟合优度必须提高的程度, 等等。
prune(tree, cp, . . . )
tree 一个回归树对象, 常是rpart()的结果对象。
cp 复杂性参量, 指定剪枝采用的阈值。
rpart包自带数据集stagec,包含了146位患了stage c前列腺(prostate)癌的病人。变量介绍如下:
pgtime: 出现症状或复发时间,单位年;
pgstat:状态变量,1为复发,0为删减;
age:年龄;
eet:是否内分泌治疗,1为no,2为yes;
g2:g2阶段肿瘤细胞百分比;
grade:肿瘤等级,farrow体系;
gleason:肿瘤等级,gleason体系;
ploidy:肿瘤的倍体状态。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27