京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析方法分享
1 数据分析前,我们需要思考
像一场战役的总指挥影响着整个战役的胜败一样,数据分析师的思想对于整体分析思路,甚至分析结果都有着关键性的作用。
2 分析问题和解决问题的思路
定义问题(重要步骤之一):
1)首先,要搞清楚问题的实质,准确、完整、真实地表达问题。
2)其次,弄清楚为什么要解决这个问题?
3)最后,解决这个问题的意义何在?是必须解决还是无关紧要,或是需要马上解决这个问题还是不太着急。
收集整理信息:
搜集、整理关于要解决问题的历史资料、类似情况和现状。例如,从现有的报表数据中就能看到当前问题点的数据情况或者一段时间的趋势;
选取分析方法:
1)分析涉及到的主要维度,为后面提取数据需求做准备;
2)选取的分析软件以及分析方法(统计学相关方法);
数据提取整理(重要步骤之二):
1)根据分析内容以及分析方法,提出分析所需的数据需求;
2)对于反馈回来的数据,需要进行部分加工,以便更能反映所要分析的问题;
分析结果及结论:
1)根据分析的结果,得出一些当前问题产生的一些结论。这里注意分析的方法以及维度,结果的展示方式等。
2)结论需要足够的数据作支撑;
实施及建议措施:
1)针对数据分析结论,给出当前问题的解决建议措施;
2)一方面从业务层面进行建议措施。另一方面,可以就问题点进行更深层次分析,给出数据挖掘层面的解决措施;
实施效果评估及报告整理:
1)根据措施实施效果进行评估,将完成的分析过程、结果以及评估整理报告,为以后出现问题提供经验教训;
2)对于本次没有完全解决的问题,进行说明。
3 精确地陈述问题
5W2H法:
5W:What、When、Where、Who、Why;
2H:How many、How much;
Where——哪里存在问题?
What——存在的问题是什么?
Why——原因在哪里?
When——什么时候开始出现这样的问题?
Who——与什么对象有关?
How many——发生的次数和数量?
How much——损失有多大?
4 问题展示方式
问题结构是由现状、直接原因以及最终原因构成的。针对直接原因进行的叫初步问题分析、针对最终原因进行分析的叫深层及问题分析。
5 分析方法
统计方法的三大特性,用三句话来简单概括:
1)实用性:除了实情,数据能证明一切;
2)丰富性:统计揭露出的部分固然明晰,没揭露出来的或许更重要;
3)公平性:每个人都应当用数据说话。
6 描述性统计分析
“五点法”:最小值、1/4分位数、均值、3/4分位数、最大值;
“两度”:峰度、偏度
六西格玛:
责编:pingxiaoli
7 变量分析方法选取
按挖掘方法分类:包括统计方法、机器学习方法、神经网络方法和数据库方法。
其中:
1)统计方法可分为:判别分析(贝叶斯判别、费谢尔判别、非参数判别等),聚类分析(系统聚类、动态聚类等),探索性分析(主成分分析等)等。
2)机器学习方法可分为:归纳学习方法(决策树、规则归纳等),基于范例学习,遗传算法等。
3)神经网络方法可分为:前向神经网络(BP算法等),自组织神经网络(自组织特征映射、竞争学习等)。
4)数据库方法分为:多维数据分析和OLAP技术,此外还有面向属性的归纳方法。
关联规则:关联规则反映一个事物与其他事物之间的相互依存性和关联性,如果两个事物或者多个事物之间存在一定的关联关系,那么其中一个事物就能够通过其他事物预测到。
9 选取分析所需的相关数据
10 数据质量的评估
在现实社会中,存在着大量的“脏数据”:
不完整性(数据结构的设计人员、数据采集设备和数据录入人员):
1)缺少感兴趣的属性
2)感兴趣的属性缺少部分属性值
3)仅仅包含聚合数据,没有详细数据
噪音数据(采集数据的设备、数据录入人员、数据传输):
1)数据中包含错误的信息
2)存在着部分偏离期望值的孤立点
不一致性(数据结构的设计人员、数据录入人员):
1)数据结构的不一致性
2)Label的不一致性
3)数据值的不一致性
数据类型冲突:
1)性别:string(Male、Female)、Char(M、F)、Integer(0、1)
2)日期:Date、DateTime、Sting
数据标签冲突:解决同名异义、异名同义:
学生成绩、分数
度量单位冲突:
1)学生成绩
a.百分制:100~0
b.五分制:A、B、C、D、E
c.字符表示:优、良、及格、不及格
概念不清:
最近交易额:前一个小时、昨天、本周、本月
聚焦冲突:根源在于表结构的设计
11 数据的清洗处理
主要任务:
补充缺失数据
识别孤立点
处理不一致的数据
处理方法:
分箱(Binning)的方法:
聚类方法:检测并消除异常点
线性回归:对不符合回归的数据进行平滑处理
人机结合共同检测:由计算机检测可疑的点,然后由用户确认
12 怎样将分析的结果呈现出来
指标分析与政策分析并重
反映重点问题、实事求是
材料、数据要真实,论据要有说服力
切记:
分析角度:缺乏分析中心思想或主干线
文字表达:“一图二表三文字”
逻辑结构:论点、论据、论证
13 分析结果呈现基本原则
数据分析结果呈现准备工作:
确定表达的主题:
使用图形的目的:
将思想和观点形象化地表达,加深读者或听众的印象
使用图标时,必须明确通过图表要表达的信息是什么
确定对比关系:
同一类别不同项目间的对比
不同类别不同项目间的对比
时间对比:把时间作为项目分类的标准
频率对比:以部分占整体的百分比为项目分类的标准
相关性对比:按照项目之间的函数关系作为项目分类的标准
其他对比:逻辑关系的对比(因果、时间序列……)
选择图形:
饼图;柱状图;线形图;雷达图;面积图;点图;气泡图;矩阵图;逻辑图……
14 如何用图来表示数据
选择图表的方法可以参照我们往期的文章:
信息可视化图表设计
15常见的分析模式
内容决定形式、形式服务于内容,当形式经过时间考验被普遍接受后就固化成一种模式。
分析报告的模式主要包括:
金字塔式
综合式
三步曲
专题式
通报
简报式
工作汇报式
16 分析总结及建议措施
建议措施分类:业务层面;数据挖掘
17 实施效果评估及报告整理
1)营销活动效果反馈数据,分析对于问题的解决程度
活动历史响应数据的积累;
活动流程固化;
2)业务模型优化提升
对比组,显示模型本身的优越性;
营销活动数据对于模型的提升情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27