
大数据是开启环统数据应用的“金钥匙”
环境统计是我国国民经济和社会发展统计的重要组成部分,在综合反映环境状况、服务环境管理和科学决策方面发挥了重要的基础性作用。经过多年的发展和积累,当前环境统计数据库已经具备了使用大数据库技术分析运用的基础条件。如何进一步提高环保服务事业供给动力、助推供给侧结构性改革,是环保部门值得深入思考的问题。
笔者认为,采用大数据技术深入解析环统数据库信息正是环保服务事业改革方向之一,其解析后的成果运用有以下几个方面。
预测污染趋势
开展区域性工业污染和农业面源污染行业动态分类统计和污染趋势预测,服务于政府相关决策。
通过历史数据库信息,运用云计算大数据处理技术,可以获取某行政区域内一定时间段内重点污染行业污染物排放、重点污染企业污染物排放的动态变化情况,包括行业分类统计和变化、区域污染企业统计和变化、主要污染物总量统计和变化等,在此基础上结合上年度总量减排成果、上年度落后产能淘汰计划、区域年度工业经济发展目标、区域环境质量现状及年度保护目标、水耗和能耗指标等,通过大数据技术科学合理预测这一区域年末污染物排放和污染源变化情况、梳理具有减排潜力的项目库。即用大数据技术的解析成果辅助制定年度区域污染物总量减排计划、精准分解任务,如果统计时间段够长,可以辅助制定未来一个五年期的总量减排任务。
此外,解析成果可作为当地政府开展区域污染防治精细化管理、多部门联动工作的决策基础,结合区域环境承载能力分析,科学合理进行产业和企业布局,进一步优化国土空间开发格局。
保障数据真实
促进环统数据进一步归真,环统和监测数据相融合。
以大数据为基础,通过数值逻辑建模分析、关系数据模型解析等手段,梳理数据库中存在的不合理的污染减排项目信息,结合实际情况逐一排查核实,进行数据归真,即将目前主要由“手动人工”筛选的环统工作方式彻底转变为“人工智能”方式,不仅可以解放基层环统工作人员,还提高了统计容错率和准确率。同时将环统数据库与区域环境质量监测数据库、污染源在线监控数据库等关联对接,可进一步确保相关数据逻辑相统一、去伪存真。
服务供给侧改革
将解析成果服务于区域供给侧结构性改革工作。
通过大数据处理,设定某一时间段,获取某行政区域内重点企业的经济发展贡献(即企业工业总产值/区域工业总产值,兼顾单位工业总产值综合能耗)占比,同时获取这一行政区域内重点企业的污染排放(即企业污染物排放总量/区域污染物排放总量)贡献占比,进行数据关联分析,梳理区域内经济发展贡献低、污染排放贡献高的(即经济环保效益低)企业项目信息,形成总量减排潜力项目库,优先纳入年度减排计划。
同时大数据也可以梳理出经济环保效益中等的企业项目信息,报请地方政府指导企业开展产品升级换代、工艺技术改造等,对于经济环保效益较高的企业项目,应纳入排污权储备管理项目库,预留新增污染物排放指标,适时给予环保政策倾斜,支持企业做大做强。
此外,结合相关部门淘汰落后产能计划,从总量减排角度整理优先纳入淘汰计划的项目库信息,助力推进供给侧结构性改革工作。
助力环境监管
进一步强化工业企业环保审批、环境监管执法工作。
根据环统数据库区域地理信息,结合区域规划环评工作成果,提高环境准入门槛,进一步优化新增产能布局和结构,鼓励发展优质产能,对于环境综合整治、城乡污染治理、新兴产业以及环保产业等给予大力支持。
通过大数据库技术,统筹处理环统数据库与项目环保审批、环保监管执法等信息,整合环统和监测数据空间地理信息等,梳理环境违规违法建设项目库,诸如环评验收手续不全、排污许可证过期、实际排放总量与环评验收批复总量不符等,及时开展清理整顿工作,结合GPS遥感技术污染源节点定位,适时开展区域限批。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08