
大数据应用的创新路径
随着云计算、移动互联网和物联网等新一代信息技术的创新和应用普及,海量数据正在生成。2015年,中国大数据市场规模达到115.9亿元人民币,增速达38%,预计2016至2018年中国大数据市场规模将维持40%左右的高速增长。大数据正从概念向实际应用转移,越来越多的成功案例相继在不同领域涌现。
IBM日本公司的经济指标预测系统,从互联网的新闻中搜索影响制造业的480项经济数据,计算出采购经理人指数PMI(采购经理指数)预测值。而IBM根据网上的新闻分析出的这个PMI预测值,准确度相当高;美国印第安纳大学学者利用Google提供的心情分析工具,以用户970万条留言,提前2-6天预测道琼斯工业指数,准确率达到87%。
在中国,“淘宝CPI(居民消费价格指数)”这一指数通过采集、编制淘宝网上成交额比重达57.4%的390个类目的热门商品价格走势,反映网络购物市场整体状况以及城市主流人群的消费状况;阿里公司根据淘宝网上中小企业的交易状况筛选出财务健康和诚信的企业,从而无须担保来放贷。目前已放贷300多亿元,坏账率仅0.3%,大大低于商业银行;此外,利用对手机用户身份和位置的检测可实时动态掌握流动人口的来源及分布情况,也可实时掌握交通流量情况,可了解突发性事件的聚集情况等。
在各个领域,掌握庞大的数据信息,并对这些含有意义的数据进行专业化处理,大数据就有了不同寻常的商业价值。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,就在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。当下,大数据的价值已在许多行业被挖掘出来。
对此,中国工程院院士邬贺铨指出,大数据本身服务业的属性大于大数据软硬件的制造业;大数据对其他产业的影响大于对信息产业的影响;大数据的社会效应大于直接经济效益。因此,大数据的影响之大以及受到的广泛重视溢出效益明显。目前来看,大部分企业是把大数据分析用于客户分析,然后是运营分析、诚信分析;此外还应用与新产品和业务的创新,企业数据仓库优化。大数据支出最大的产业,一是离散制造,二是银行,三是流程制造。
今年3月份通过的“十三五”规划中,专门有一章提到促进大数据产业健康发展,并提出要深化大数据在各行业的创新应用,探索和传统行业协同发展的新业态、新模式,加快完善大数据的产业链。
“我们需要加强研究,加大投入,综合运用各方面的技术掌握数据资源,加强大数据的挖掘分析,实现在各个行业的创新应用,挖掘大数据的深层价值。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08