
高效的数据分析不是马上就能学会的,但是可以通过快速学习掌握。这里有7个数据分析的习惯,我希望有人可以针对一个工程团队,告诉我关于数据分析的高效合作,沟通以及投资。
1.相比花哨算法,更重视分析的简单性
如果你都不能向一个5岁的小孩解释清楚,那么你将很难将你的产品卖给其他人。产品数据分析的重点不是分析,别误会,你还是需要分析,但是它的故事和基于数据的推荐真的很重要。
复杂的分析造成的混乱将导致你获得完全相反的结果。你希望能够驱动工程和投资分析行为。如果你的分析是不清晰的,工程师就不能快速通过你的分析获得知识,那么你的分析就会失去价值。
关于数据分析的影响力的最终测试是根据工程和投资行为的改变程度。应该令数据分析变得容易,方便人们使用,得以实现改变。
2.相比数据,更加重视数据源
在更广泛的时间段里看更多的数据可以给你在分析上有更多的信心。然而,遥测或日志作为单一的传递途径会被捕捉到的特性所限制。一般来说,一个单一的途径只讲述产品的一部分。
相同分析+相同原理=相同故事
你需要的是其他数据源。可以是所有被登记在某处的SQL操作记录,或者是你有工具可以从你的用户那里获得日志样本。更多的数据源也会让你确定你的故事是否一致。更多的数据不能给你更多得洞察力。但是更多的数据源可以。
3.相比最新亮眼的工具,更加重视熟悉的工具
亮眼的最新工具使用起来很有趣,有时候也很管用。但是,你还记的你的数据分析的影响力的最终测试吗?
你希望工具变的容易,能够被人们所使用并得到自己想要的改变,但是改变不是这么容易的。从文章《你的大脑在工作》即《Your Brain at Work》学到3点,希望大家能牢牢记住,它们能给与你们最大程度的帮助来促进改变。
对于你的工程师伙伴而言,令工具安全很重要,它们可以被使用和促进改变。通过使用你熟悉的工具,讲述那些快速吸引大家注意力的故事。远离最近,最酷的可视化技术除非它们在你的故事中必不可少。
深入分析核心信息
重复核心信息,不断的重复
除非你正在推荐一个新工具的使用,重点不是在工具,而是你故事的核心信息。
4.相比指标,更加重视洞察力和投资
指标是指你的关键性能指标(KPI)。它们可能以图表,坐标或表的形式表现。你的分析不能就此止步。指标只是数据驱动工程‘3I’里面的第一个‘I’,告诉别人一个围绕数据的充满洞察力的故事,然后建议他们投资。你是改变的代理人,你的分析必须充满你的见解和对投资的建议。
5.相比信任,更加重视CUSS
数据永远都是不干净的。这就是为什么我常常觉得自己像一个门卫。作为数据门卫,我很少相信里面的数据以及它们的格式是正确的。我总是从使用‘R语言的可能性和统计的介绍’中应用Kern’s CUSS,为了能够理解数据中心,数据的异常特征,数据的传播和数据的形状。
中心:数据的总体趋势所在
异常特征:有缺失的数据点?离群值?集群?
传播:数据产生哪些变化?
形状:如果你来绘制数据,数据的形状是什么?
了解数据如何生成和数据的CUSS可以让你作出更好且合理的见解和投资。
6.相比确定性,更重视方向
数据收集的成本经常是解决业务和工程问题的最终答案的一大障碍。你几乎总是能得到不完整的答案,虽然比你手中已有的答案好。
《如何测试任何事》(How To Measure Anything)的作者推荐我们可以问这个问题:“是否存在一个测试的方法可以减少不确定性,足够来确定测试的成本?”
即使你没有相应的工具来明确的回答特定的组件是否有这个问题。你也可以消除一些组件,通过廉价的方式来减少不确定性。也许你可以凝聚几个不同来源的数据,得到一些非常粗略的结果,让事情朝着正确的方向前进。
7.相比你在“思考”软件是如何工作的,软件的实际工作更重要
产品数据分析的优点是看到实际用户使用你的软件产品的足迹。有时你会得到一个很好的的足迹。但也有可能,你得到的部分足迹让你的调查更加困难。无论如何,遥测和日志的足迹都是现实的反映。
架构知识是伟大的资产。但是,遥测和日志通过确凿的证据告诉我们实际发生了什么,结果并不是我们希望看到的。作为一名数据科学家,如果你对数据有着独特的看法。那么你看到的软件,就是软件的真实情况。
这是很强大的,因为你不仅有足够的证据显示软件是如何工作的,也可以对广泛的用户有针对性的洞察。你可以声称:“77%的用户沿着的这条编程路径是和软件设计矛盾的。”相信你的用户留下的足迹,但是要重复检查。在‘统计学习的元素’这篇文章中,有一句引言我很喜欢:“正如我相信上帝一样,我也相信他人带来的数据。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10