
详解数据分析的一般步骤及业务分析方法
数据分析对企业来说意义重大,现在数据分析岗位也很普及。好的数据分析,能为企业转型决策提供依据,作为企业中的顶梁柱,你怎么能不会数据分析?今天纽带线CRM小编辑跟大家一起来学学数据分析的一般步骤及业务分析方法。
一、数据分析的一般步骤浓缩精华版
第一步:数据准备:(70%时间)
获取数据(爬虫,数据仓库)
验证数据
数据清理(缺失值、孤立点、垃圾信息、规范化、重复记录、特殊值、合并数据集)
使用python进行文件读取csv或者txt便于操作数据文件(I/O和文件串的处理,逗号分隔)
抽样(大数据时。关键是随机)
存储和归档
第二步:数据观察(发现规律和隐藏的关联)
单一变量:点图、抖动图;直方图、核密度估计;累计分布函数
两个变量:散点图、LOESS平滑、残差分析、对数图、倾斜
多个变量:假色图、马赛克图、平行左边图
第三步:数据建模
推算和估算(均衡可行性和成本消耗)
缩放参数模型(缩放维度优化问题)
建立概率模型(二项、高斯、幂律、几何、泊松分布与已知模型对比)
第四步:数据挖掘
选择合适的机器学习算法(蒙特卡洛模拟,相似度计算,主成分分析)
大数据考虑用Map/Reduce
得出结论,绘制最后图表
循环到第二步到第四步,进行数据分析,根据图表得出结论完成文章。
二、数据分析业务分析版
“无尺度网络模型”的作者艾伯特-拉斯洛·巴拉巴西认为——人类93%的行为是可以预测的。数据作为人类活动的痕迹,就像金矿等待发掘。但是首先你得明确自己的业务需求,数据才可能为你所用。
数据为王,业务是核心
了解整个产业链的结构
制定好业务的发展规划
衡量的核心指标有哪些
有了数据必须和业务结合才有效果。首先你需要摸清楚所在产业链的整个结构,对行业的上游和下游的经营情况有大致的了解。然后根据业务当前的需要,指定发展计划,从而归类出需要整理的数据。最后一步详细的列出数据核心指标(KPI),并且对几个核心指标进行更细致的拆解,当然具体结合你的业务属性来处理,找出那些对指标影响幅度较大的影响因子。前期资料的收集以及业务现况的全面掌握非常关键。
思考指标现状,发现多维规律
熟悉产品框架,全面定义每个指标的运营现状
对比同行业指标,挖掘隐藏的提升空间
拆解关键指标,合理设置运营方法来观察效果
争对核心用户,单独进行产品用研与需求挖掘
发现规律不一定需要很高深的编程方法,或者复杂的统计公式,更重要的是培养一种感觉和意识。不能用你的感觉去揣测用户的感觉,因为每个人的教育背景、生活环境都不一样。很多数据元素之间的关系没有明显的显示,需要使用直觉与观察(数据可视化技术来呈现)。
3. 规律验证,经验总结
发现了规律之后不能立刻上线,需要在测试机上对模型进行验证。
有关数据分析,还有更多更重要的内容值得我们去学习,今天的数据分析步骤和业务分析方法希望能对大家有帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07