京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据不等于好数据
大数据不一定等同于好数据,且越来越多的专家也坚信这一点,大数据并不会自动产生好的分析结果。如果数据不完整、断章取义或者被破坏,可能会导致企业产生错误的决策,从而削弱企业的竞争力或影响用户个人日常生活。
美国哈佛大学教授、定量社会科学研究所主任——Gary King就曾因数据分析时断章取义,得出了错误的结果。他发起了一个大数据分析项目,即通过检测Twitter和其他社交媒体帖子中的“工作”、“失业”和“分类”等关键词,来预测美国的失业率。

通过使用情感分析的技术,该组织收集了包含这些关键字的tweet和其他社交媒体帖子,来查看这些帖子的增加或减少是否与每月失业率存在相关性。
在监测这些内容时,研究人员发现包含其中一个关键字(“工作”)的帖子数量急剧增加,但随后,他们发现这与失业率毫无关系,因为他们忽略了乔布斯(乔布斯的名字Jobs也有“工作”的意思)去世的消息。我们应从这个例子中吸取教训,不要完全依靠“神奇”的大数据来指导决策。
King表示,“jobs”的双重含义只是诸多类似事件之一,在这一领域工作的人都遇到过类似的经历。他说:“这些关键字列表在短期内可能可行,但从长远来看,往往会带来灾难性的失败。你可以通过添加额外的关键字来解决问题,但这需要大量的人力参与。”
你可以输入关键些到Bing Social页面,便会看到一些相关或者无关的东西。如果你不更改查询,随着时间的推移,你会发现含有这些关键词的话题正以某种方式逐渐偏离主题,有时候偏离比较小,有时候却很大。”
但King表示,总体而言,很多大数据分析都产生了有用的内容。Vantiv公司首席安全官兼高级副总裁Kim Jones表示,这不是一个新问题,但如果人们认为大量数据能够奇迹般地产生良好的分析结果,这个问题可能会变严重。他指出:“Jobs的例子是一个经典的案例,数据本身并不等同于智慧。”
King认为内容是关键。他是大数据分析公司Crimson Hexagon首席科学家兼联合创始人,用该公司市场营销执行副总裁Wayne St. Amand的话来说,该公司旨在为在线对话提供“内容、意义和结构”。
然而,越来越多没有内容的数据在推动决策过程。华尔街日报2月份曾报道,医疗保险公司使用大数据来为其用户创建个人资料文件。该公司追踪的信息之一是购买加大号衣服的历史记录,这可能会导致将转诊转为减肥的计划。
没有人会觉得鼓励人们更健康地生活是错误的事情,但是这方面涉及的隐私问题却令人不安。这个人购买加大号衣服可能是送给另一位家庭成员。而且这种隐私问题可能带来更严重的影响。《彭博商业周刊》在2008年曾报道过有人因购买处方药的历史记录,而被保险公司拒绝为其上医疗保险,而这个人买药的历史记录暴露这个人有轻微的心理健康问题。
Adam Frank在博客中指出,在某些情况下,银行会因为用户在社交网站LinkedIn或者Facebook上的联系人的情况而拒绝用户的贷款。如果你的朋友赖账,你的信誉可能也会受到他们的信誉的影响。ACLU高级政策分析师Jay Stanley指出,“信用卡公司有时会因为其他消费者的信贷历史记录而降低消费者的限额。”
Kim Jones表示,从相关性得出结论,而不进行进一步分析,这给他本人也带来过麻烦。“在80年代后期和90年代初期,有数据显示,驾驶入门级豪华车,且年龄在20和27岁之间的西班牙裔和黑人男性最有可能是毒贩。而我正好符合这个标准,我是非裔美国人,年龄也在这个范围内,当时我开的正式这样的车,但我并不是毒贩。”
他表示,“我们不能只是依靠数据分析,那样可能会导致一些坏的结果。如果你忽略人类的分析因素,那么你的错误率将会非常高。”
简言之,大数据是一个工具,但不应该被视为解决方案。“它可以帮助你缩小范围,从数百万可能缩小到150左右,”Jones表示,“但是我们不能让计算机做一切判断,因为这最终可能会给你带来麻烦。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05