
2016年大数据的8个预测
近期我一直在盯着自己的水晶球以预测大数据在明年将走向何方。正如所有的预测一样,我们必须要多加小心,因为并不是所有的预测都能变成真的。当然,一些真正改变游戏规则的创新往往并不在人们的视野内,就连警惕性极高的预言家们也会对它们的突然出现感到震惊。如果明年出现一些彻底改变我们数据处理理念的重大东西,而我却在这里忽视了它们,那么责任只能归咎于我的水晶球了。
大数据经济将达到1250亿美元
这一营收业绩包括了厂商所销售的软件、硬件和允许其它公司执行大数据策略的服务。这一数据是市场研究机构IDC的市场研究专家们经过研究所得出来的。
物联网将成为主流
如今市场上已经出现了大量可穿戴设备和带来数据功能的设备。有些设备设计的非常棒,有些设备虽然风靡一时,但是缺乏实际应用。随着需要24小时随时在线的人员数量持续增长,2015年将是这类设备和早期部署者市场爆发的一年。我们可能很快就会在大街上看到戴着智能眼镜的人。
机器将在重大决策中发挥更大作用
尽管做出决策的主体还是人,但是目前大数据已经在决策过程中发挥着指导作用。随着机器学习的不断发展,能够分析海量数据的机器将会做出比人类更为精准,更为可靠的决策。在不久的将来这将成为现实。
文本分析将被更为广泛使用
如今,我们所存储用于分析的大部分数据已经逐渐变成了非结构型数据。在过去几年里,文本分析已经变得越来越复杂,这一趋势还将会继续发展下去。计算机将能够更为熟练地“阅读”一篇文章(或是将声音转化为文字),并能够理解文章的主题和情感。这意味着这些文章能够像结构型数据那样被分类和分析。
数据可视化工具将统治市场
市场已经出现了让数据实现可视化的专业软件,它们可以让我们更容易地发现其中的规律,找到因果联系。这些软件将变得越来越复杂并被广泛使用。这类软件市场的增长速度将是其它商务智能软件产品市场增长速度的2.5倍。
公众将会对隐私产生巨大恐慌
像苹果、索尼和Snapchat等用户在近年来所遭遇的漏洞一样,重大安全漏洞一直以来并没有影响到大众在社交媒体和网络中分享隐私生活细节的行为。实际上,从未有过如此多的人认为,向公司提供个人信息只是享受新技术的便利所付出的小代价。我们能不能承受“完全风暴”。如今,黑客已经能够威胁到最安全的系统,而政府和执行部门防止数据泄漏,将不法之徒绳之以法的进程却非常缓慢。灾难性的黑客攻击或信息泄漏可能将会足以改变人们的态度,让人们恢复保护个人数据的意识。
公司和机构将竞相寻找数据人才
直接涉足大数据分析的岗位的从业人员明年可能会达到440万人,但是这一数量还不够。据市场观察显示,到2015年,70%的美国公司将会执行适当的数据策略,或是为不远的将来制订相关数据策略。虽然设置与大数据分析有关课程的大学数量正在持续增加,但是具备未来所须技能的员工数量还是在持续短缺。
大数据将提供解开宇宙中众多谜团的钥匙
大型强子对撞机目前正在升级改造中,预计在明年初将重新投入使用。在该设备中,每秒高速质子碰撞将发生6亿次,每年采取的信息达到30拍。这些信息被由分散在36个国家中的170个计算设施所组成的网络进行分析,是迄今为止最大的科研性大数据实验项目。它们目前已经成功找到了与希格斯玻色子理论相匹配的粒子。许多人认为,这一发现意味着在理解宇宙的起源和运转之谜方面,我们正在朝着正确的方向前进。升级后的大型强子对撞机的性能是升级前的两倍,在重新投入使用后,谁又知道我们又将会发现什么呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09