
亚马逊CTO Werner Vogels是AWS的主力人员,之前Vogels一直大力提倡公有云,但现在他开始意识到混合云才是企业的现实。
在AWS Summit 2014上进行了主题演讲之后,Vogels和我谈了一下自己的本行。其中一个很有意思的现象就是AWS的观点随着时间推移的变化。AWS在Vogels 领导的时期,大谈特谈什么是真正的云,什么是冒牌云。而在今天,AWS承认了混合云的现实,但是他们显然认为天平会倾向于公共计算这一边。
和它的母公司亚马逊一样,AWS也信奉顾客至上,任何新产品或服务都必须以客户为导向。对于首席信息官们来说,他们可能会被云计算的愿景所吸引,但是他们也不能二话不说地扔掉自己的固有投资。企业的一些功能还是要留在企业内部。
下面是我们谈话的一些要点,主要关于混合云,技术债务,移动化,OpenStack以及大数据的。
AWS的移动性行动。Vogels 表示云计算和移动化不可避免地会交织在一起。他还表示在设备上使用的内容和数据还比较少。“更年轻的企业在移动化方面走在前面,”他表示。AWS的作用是 消除开发流程的复杂性——通过中央ID管理和虚拟工作区——并为创新和敏捷性提供基础。Vogels 表示,“CIO们一直给我们反馈。BYOD(自带设备)很重要,但是他们不希望自己管理设备。他们希望管理虚拟工作区,希望管理资源充足的环境。”
换句话说,AWS和全球其他厂商在移动性方面的方向是一致的。移动性更多地是关于协作和身份管理的,而不是关于设备的。设备管理和桌面电脑一样。值得注意的是AWS——还有谷歌公司和微软公司——将通过在文档分享和协作方面的定价让Box和Dropbox活在地狱中。
云计算无休止地吞噬着更多的后台服务支撑企业。但是,一些公司因为隐私、安全和法规要求等原因无法使用云计算应用。下面就谈一谈如何将私有云和公有云正确地组合在一起。
混合数据中心。Vogels表示,“混合对我们来说很重 要。”他表示,“很明显,我们是公有云,但是现实是对于企业来说,有些东西必须留在内部。”事实上,最大的问题是在未来如何定义混合。是90%的私有加上 10%的公有云吗?还是反过来?或者是两者之间的什么比例?第三个答案是正确的答案,但是定义什么是中间状态需要好运气。
Vogels指出,新闻集团这样的企业正在利用AWS将数据中心云化,比例从40%推向60%, 这就是他们对于混合的定义。AWS的计划是提供一系列工具,例如虚拟专网和直接连接,以及联合身份认证来连接企业内部的数据中心。AWS提供VMware 管理集成的举动更表明了这家公司想要进入混合世界的意图。
AWS的首席解决方案架构师YinalOzkan的一番谈话能够显示出两者之间的细微差别。对 AWS的应用案例从offloading storage和分析到云计算、灾难恢复不一而足。Vogels介绍说,例如,三星在AWS上运行它的Smart Hub TV软件,但是财务交易是在内部基础架构上完成的。为什么会这样?三星集团不同的业务板块都依靠着这些内部的基础架构完成交易,对它进行迁移实在是太困难 了。而且,银行会在云端运行面向客户的功能,但是交易则会留在金融机构内部的数据中心。
那么公有云的部分如何在混合数据中心中占到更大比例呢?那就是循序渐进。Vogels认为高性能计算(HPC)促进云化的关键。石油、天然气及娱乐等行业的众多企业已经在高性能计算系统上进行了投资,但是内部资源可能在几个月内就被预订一空。
Vogels表示,“企业内部的高性能计算成本高昂,在所有的时间都是100%地占用。”他补充道,额外的工作将不得不走向云端。外部事件——需要计算资源进行分析——往往不得不选择云。
企业遗留下来的基础设施和技术债务。AWS和亚马逊都有技术债务——遗留下来的基础架构不可能全部丢掉——Vogels表示关键在于建立一种不会束缚你的技术架构。
Vogels表示,亚马逊公司内部会假定今天的软件在两年后就不再适用。软件必须具备随着时间推移发展的能力。“这就意味着我们不会被我们之前的系统束缚”。他表示,“当然,我们有技术债务,但是我们可以改变系统和运营。我们比客户的处境要好得多。”
值得注意的是,亚马逊公司自己在某种程度上就是混合的结构。Vogels解释说,亚马逊的零售业 务主要运行在AWS上,但是它的产品数据缓存则是在内部进行的。产品信息使用的是专门针对它设计的硬件。Vogels表示,“我们将这些部分留在内部,但 是在云里开发下一代系统。”
AWS根据用户的需求分批处理遗留的基础架构。例如,AWS已经采用了第二代实例类型,并且要求 逐步淘汰旧的版本。Vogels表示旧的系统仍将留在其他功能上。内部高性能计算系统的平均寿命大约是5到8年,但是研究人员会在第二年就开始抱怨,因为 他们没有用上最新的处理器。Vogels表示,“我们可以将这些高性能计算系统转到一般用途上,然后就可以有更快的更新周期了。”
Vogels表示,在涉及到遗留下来的基础架构的时候,企业通常会寻求重组架构,并且在未来加以考验,而不喜欢放弃旧的设施,直接转到云端。
大数据、MapReduce和Hadoop。谷歌公司最近表示MapReduce已经过时了,而且这种技术也已经走到尽头了。Vogels同意这种观点。
Vogels表示,最终,“MapReduce会沉到更底层。”使用Hadoop和MapReduce的自定义分析才是至关重要的。 最终,MapReduce将被当成是等式当中的一部分使用,而不是全部。Amazon流行的Redshift服务能够提供MapReduce无法提供的快 速而简单的分析。MapReduce有很多应用,也有一个很大的开发者社区,但是到最后,它会变成大数据组合中的一部分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28