
亚马逊CTO Werner Vogels是AWS的主力人员,之前Vogels一直大力提倡公有云,但现在他开始意识到混合云才是企业的现实。
在AWS Summit 2014上进行了主题演讲之后,Vogels和我谈了一下自己的本行。其中一个很有意思的现象就是AWS的观点随着时间推移的变化。AWS在Vogels 领导的时期,大谈特谈什么是真正的云,什么是冒牌云。而在今天,AWS承认了混合云的现实,但是他们显然认为天平会倾向于公共计算这一边。
和它的母公司亚马逊一样,AWS也信奉顾客至上,任何新产品或服务都必须以客户为导向。对于首席信息官们来说,他们可能会被云计算的愿景所吸引,但是他们也不能二话不说地扔掉自己的固有投资。企业的一些功能还是要留在企业内部。
下面是我们谈话的一些要点,主要关于混合云,技术债务,移动化,OpenStack以及大数据的。
AWS的移动性行动。Vogels 表示云计算和移动化不可避免地会交织在一起。他还表示在设备上使用的内容和数据还比较少。“更年轻的企业在移动化方面走在前面,”他表示。AWS的作用是 消除开发流程的复杂性——通过中央ID管理和虚拟工作区——并为创新和敏捷性提供基础。Vogels 表示,“CIO们一直给我们反馈。BYOD(自带设备)很重要,但是他们不希望自己管理设备。他们希望管理虚拟工作区,希望管理资源充足的环境。”
换句话说,AWS和全球其他厂商在移动性方面的方向是一致的。移动性更多地是关于协作和身份管理的,而不是关于设备的。设备管理和桌面电脑一样。值得注意的是AWS——还有谷歌公司和微软公司——将通过在文档分享和协作方面的定价让Box和Dropbox活在地狱中。
云计算无休止地吞噬着更多的后台服务支撑企业。但是,一些公司因为隐私、安全和法规要求等原因无法使用云计算应用。下面就谈一谈如何将私有云和公有云正确地组合在一起。
混合数据中心。Vogels表示,“混合对我们来说很重 要。”他表示,“很明显,我们是公有云,但是现实是对于企业来说,有些东西必须留在内部。”事实上,最大的问题是在未来如何定义混合。是90%的私有加上 10%的公有云吗?还是反过来?或者是两者之间的什么比例?第三个答案是正确的答案,但是定义什么是中间状态需要好运气。
Vogels指出,新闻集团这样的企业正在利用AWS将数据中心云化,比例从40%推向60%, 这就是他们对于混合的定义。AWS的计划是提供一系列工具,例如虚拟专网和直接连接,以及联合身份认证来连接企业内部的数据中心。AWS提供VMware 管理集成的举动更表明了这家公司想要进入混合世界的意图。
AWS的首席解决方案架构师YinalOzkan的一番谈话能够显示出两者之间的细微差别。对 AWS的应用案例从offloading storage和分析到云计算、灾难恢复不一而足。Vogels介绍说,例如,三星在AWS上运行它的Smart Hub TV软件,但是财务交易是在内部基础架构上完成的。为什么会这样?三星集团不同的业务板块都依靠着这些内部的基础架构完成交易,对它进行迁移实在是太困难 了。而且,银行会在云端运行面向客户的功能,但是交易则会留在金融机构内部的数据中心。
那么公有云的部分如何在混合数据中心中占到更大比例呢?那就是循序渐进。Vogels认为高性能计算(HPC)促进云化的关键。石油、天然气及娱乐等行业的众多企业已经在高性能计算系统上进行了投资,但是内部资源可能在几个月内就被预订一空。
Vogels表示,“企业内部的高性能计算成本高昂,在所有的时间都是100%地占用。”他补充道,额外的工作将不得不走向云端。外部事件——需要计算资源进行分析——往往不得不选择云。
企业遗留下来的基础设施和技术债务。AWS和亚马逊都有技术债务——遗留下来的基础架构不可能全部丢掉——Vogels表示关键在于建立一种不会束缚你的技术架构。
Vogels表示,亚马逊公司内部会假定今天的软件在两年后就不再适用。软件必须具备随着时间推移发展的能力。“这就意味着我们不会被我们之前的系统束缚”。他表示,“当然,我们有技术债务,但是我们可以改变系统和运营。我们比客户的处境要好得多。”
值得注意的是,亚马逊公司自己在某种程度上就是混合的结构。Vogels解释说,亚马逊的零售业 务主要运行在AWS上,但是它的产品数据缓存则是在内部进行的。产品信息使用的是专门针对它设计的硬件。Vogels表示,“我们将这些部分留在内部,但 是在云里开发下一代系统。”
AWS根据用户的需求分批处理遗留的基础架构。例如,AWS已经采用了第二代实例类型,并且要求 逐步淘汰旧的版本。Vogels表示旧的系统仍将留在其他功能上。内部高性能计算系统的平均寿命大约是5到8年,但是研究人员会在第二年就开始抱怨,因为 他们没有用上最新的处理器。Vogels表示,“我们可以将这些高性能计算系统转到一般用途上,然后就可以有更快的更新周期了。”
Vogels表示,在涉及到遗留下来的基础架构的时候,企业通常会寻求重组架构,并且在未来加以考验,而不喜欢放弃旧的设施,直接转到云端。
大数据、MapReduce和Hadoop。谷歌公司最近表示MapReduce已经过时了,而且这种技术也已经走到尽头了。Vogels同意这种观点。
Vogels表示,最终,“MapReduce会沉到更底层。”使用Hadoop和MapReduce的自定义分析才是至关重要的。 最终,MapReduce将被当成是等式当中的一部分使用,而不是全部。Amazon流行的Redshift服务能够提供MapReduce无法提供的快 速而简单的分析。MapReduce有很多应用,也有一个很大的开发者社区,但是到最后,它会变成大数据组合中的一部分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14