
数据
关于NMF,在隐语义模型和NMF(非负矩阵分解)已经有过介绍。
运行后输出:
可视化物品的主题分布:
结果:
从距离的角度来看,item 5和item 6比较类似;从余弦相似度角度看,item 2、5、6 比较相似,item 1、3比较相似。
可视化用户的主题分布:
结果:
从距离的角度来看,Fred、Ben、Tom的口味差不多;从余弦相似度角度看,Fred、Ben、Tom的口味还是差不多。
现在对于用户A,如何向其推荐物品呢?
方法1: 找出与用户A最相似的用户B,将B评分过的、评分较高、A没评分过的的若干物品推荐给A。
方法2: 找出用户A评分较高的若干物品,找出与这些物品相似的、且A没评分的若干物品推荐给A。
方法3: 找出用户A最感兴趣的k个主题,找出最符合这k个主题的、且A没评分的若干物品推荐给A。
方法4: 由NMF得到的两个矩阵,重建评分矩阵。例如:
运行结果:
对于Tom(评分矩阵的第2行),其未评分过的物品是item 2、item 3、item 4。item 2的推荐值是2.19148602,item 3的推荐值是1.73560797,item 4的推荐值是0,若要推荐一个物品,推荐item 2。
NMF是将非负矩阵V分解为两个非负矩阵W和H:
V=W×H
在本文上面的实现中,V对应评分矩阵,W是用户的主题分布,H是物品的主题分布。
对于有评分记录的新用户,如何得到其主题分布?
方法1: 有评分记录的新用户的评分数据放入评分矩阵中,使用NMF处理新的评分矩阵。
方法2: 物品的主题分布矩阵H保持不变,将V更换为新用户的评分组成的行向量,求W即可。
下面尝试一下方法2。
设新用户Bob的评分记录为:
运行结果是:
关于SVD的一篇好文章:强大的矩阵奇异值分解(SVD)及其应用。
相关分析与上面类似,这里就直接上代码了。
运行结果:
可视化一下:
0代表没有评分,但是上面的方法(如何推荐这一节的方法4)又确实把0看作了评分,所以最终得到的只是一个推荐值(而且总体都偏小),而无法当作预测的评分。在How do I use the SVD in collaborative filtering?有这方面的讨论。
SVD的目标是将m*n大小的矩阵A分解为三个矩阵的乘积:
[latex]
A = U S V^{T}
[/latex]
U和V都是正交矩阵,大小分别是m*m、n*n。S是一个对角矩阵,大小是m*n,对角线存放着奇异值,从左上到右下依次减小,设奇异值的数量是r。
取k,k<<r。
取得UU的前k列得到UkUk,SS的前k个奇异值对应的方形矩阵得到SkSk,VTVT的前k行得到VTkVkT,于是有
[latex]
A_{k} = U_{k} S_{k} V^{T}_{k}
[/latex]
AkAk可以认为是AA的近似。
这个算法来自下面这篇论文:
Vozalis M G, Margaritis K G. Applying SVD on Generalized Item-based Filtering[J]. IJCSA, 2006, 3(3): 27-51.
1、 设评分矩阵为R,大小为m*n,m个用户,n个物品。R中元素rijrij代表着用户uiui对物品ijij的评分。
2、 预处理R,消除掉其中未评分数据(即值为0)的评分。
计算R中每一行的平均值(平均值的计算中不包括值为0的评分),令Rfilled−in=RRfilled−in=R,然后将Rfilled−inRfilled−in中的0设置为该行的平均值。
计算R中每一列的平均值(平均值的计算中不包括值为0的评分)riri,Rfilled−inRfilled−in中的所有元素减去对应的riri,得到正规化的矩阵RnormRnorm。(norm,即normalized)。
3、 对RnormRnorm进行奇异值分解,得到:
[latex]
R_{norm} = U S V^{T}
[/latex]
4、 设正整数k,取得UU的前k列得到UkUk,SS的前k个奇异值对应的方形矩阵得到SkSk,VTVT的前k行得到VTkVkT,于是有
[latex]
R_{red} = U_{k} S_{k} V^{T}_{k}
[/latex]
red,即dimensionality reduction中的reduction。可以认为k是指最重要的k个主题。定义RredRred中元素rrijrrij用户i对物品j在矩阵RredRred中的值。
5、 [latex] U_{k} S_{k}^{\frac{1}{2}}[/latex],是用户相关的降维后的数据,其中的每行代表着对应用户在新特征空间下位置。[latex] S_{k}^{\frac{1}{2}}V^{T}_{k}[/latex],是物品相关的降维后的数据,其中的每列代表着对应物品在新特征空间下的位置。
S12k∗VTkSk12∗VkT中的元素mrijmrij代表物品j在新空间下维度i中的值,也可以认为是物品j属于主题i的程度。(共有k个主题)。
6、 获取物品之间相似度。
根据S12k∗VTkSk12∗VkT计算物品之间的相似度,例如使用余弦相似度计算物品j和f的相似度:
相似度计算出来后就可以得到每个物品最相似的若干物品了。
7、 使用下面的公式预测用户a对物品j的评分:
这个公式里有些变量的使用和上面的冲突了(例如k)。
ll是指取物品j最相似的ll个物品。
mrijmrij代表物品j在新空间下维度i中的值,也可以认为是物品j属于主题i的程度。
simjksimjk是物品j和物品k的相似度。
RredRred中元素rrakrrak是用户a对物品k在矩阵RredRred中对应的评分。ra¯ra¯是指用户a在评分矩阵RR中评分的平均值(平均值的计算中不包括值为0的评分)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26