京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据
关于NMF,在隐语义模型和NMF(非负矩阵分解)已经有过介绍。

运行后输出:

可视化物品的主题分布:

结果:
从距离的角度来看,item 5和item 6比较类似;从余弦相似度角度看,item 2、5、6 比较相似,item 1、3比较相似。
可视化用户的主题分布:

结果:
从距离的角度来看,Fred、Ben、Tom的口味差不多;从余弦相似度角度看,Fred、Ben、Tom的口味还是差不多。
现在对于用户A,如何向其推荐物品呢?
方法1: 找出与用户A最相似的用户B,将B评分过的、评分较高、A没评分过的的若干物品推荐给A。
方法2: 找出用户A评分较高的若干物品,找出与这些物品相似的、且A没评分的若干物品推荐给A。
方法3: 找出用户A最感兴趣的k个主题,找出最符合这k个主题的、且A没评分的若干物品推荐给A。
方法4: 由NMF得到的两个矩阵,重建评分矩阵。例如:

运行结果:
对于Tom(评分矩阵的第2行),其未评分过的物品是item 2、item 3、item 4。item 2的推荐值是2.19148602,item 3的推荐值是1.73560797,item 4的推荐值是0,若要推荐一个物品,推荐item 2。
NMF是将非负矩阵V分解为两个非负矩阵W和H:
V=W×H
在本文上面的实现中,V对应评分矩阵,W是用户的主题分布,H是物品的主题分布。
对于有评分记录的新用户,如何得到其主题分布?
方法1: 有评分记录的新用户的评分数据放入评分矩阵中,使用NMF处理新的评分矩阵。
方法2: 物品的主题分布矩阵H保持不变,将V更换为新用户的评分组成的行向量,求W即可。
下面尝试一下方法2。
设新用户Bob的评分记录为:

运行结果是:
关于SVD的一篇好文章:强大的矩阵奇异值分解(SVD)及其应用。
相关分析与上面类似,这里就直接上代码了。
运行结果:
可视化一下:
0代表没有评分,但是上面的方法(如何推荐这一节的方法4)又确实把0看作了评分,所以最终得到的只是一个推荐值(而且总体都偏小),而无法当作预测的评分。在How do I use the SVD in collaborative filtering?有这方面的讨论。
SVD的目标是将m*n大小的矩阵A分解为三个矩阵的乘积:
[latex]
A = U S V^{T}
[/latex]
U和V都是正交矩阵,大小分别是m*m、n*n。S是一个对角矩阵,大小是m*n,对角线存放着奇异值,从左上到右下依次减小,设奇异值的数量是r。
取k,k<<r。
取得UU的前k列得到UkUk,SS的前k个奇异值对应的方形矩阵得到SkSk,VTVT的前k行得到VTkVkT,于是有
[latex]
A_{k} = U_{k} S_{k} V^{T}_{k}
[/latex]
AkAk可以认为是AA的近似。
这个算法来自下面这篇论文:
Vozalis M G, Margaritis K G. Applying SVD on Generalized Item-based Filtering[J]. IJCSA, 2006, 3(3): 27-51.
1、 设评分矩阵为R,大小为m*n,m个用户,n个物品。R中元素rijrij代表着用户uiui对物品ijij的评分。
2、 预处理R,消除掉其中未评分数据(即值为0)的评分。
计算R中每一行的平均值(平均值的计算中不包括值为0的评分),令Rfilled−in=RRfilled−in=R,然后将Rfilled−inRfilled−in中的0设置为该行的平均值。
计算R中每一列的平均值(平均值的计算中不包括值为0的评分)riri,Rfilled−inRfilled−in中的所有元素减去对应的riri,得到正规化的矩阵RnormRnorm。(norm,即normalized)。
3、 对RnormRnorm进行奇异值分解,得到:
[latex]
R_{norm} = U S V^{T}
[/latex]
4、 设正整数k,取得UU的前k列得到UkUk,SS的前k个奇异值对应的方形矩阵得到SkSk,VTVT的前k行得到VTkVkT,于是有
[latex]
R_{red} = U_{k} S_{k} V^{T}_{k}
[/latex]
red,即dimensionality reduction中的reduction。可以认为k是指最重要的k个主题。定义RredRred中元素rrijrrij用户i对物品j在矩阵RredRred中的值。
5、 [latex] U_{k} S_{k}^{\frac{1}{2}}[/latex],是用户相关的降维后的数据,其中的每行代表着对应用户在新特征空间下位置。[latex] S_{k}^{\frac{1}{2}}V^{T}_{k}[/latex],是物品相关的降维后的数据,其中的每列代表着对应物品在新特征空间下的位置。
S12k∗VTkSk12∗VkT中的元素mrijmrij代表物品j在新空间下维度i中的值,也可以认为是物品j属于主题i的程度。(共有k个主题)。
6、 获取物品之间相似度。
根据S12k∗VTkSk12∗VkT计算物品之间的相似度,例如使用余弦相似度计算物品j和f的相似度:
相似度计算出来后就可以得到每个物品最相似的若干物品了。
7、 使用下面的公式预测用户a对物品j的评分:

这个公式里有些变量的使用和上面的冲突了(例如k)。
ll是指取物品j最相似的ll个物品。
mrijmrij代表物品j在新空间下维度i中的值,也可以认为是物品j属于主题i的程度。
simjksimjk是物品j和物品k的相似度。
RredRred中元素rrakrrak是用户a对物品k在矩阵RredRred中对应的评分。ra¯ra¯是指用户a在评分矩阵RR中评分的平均值(平均值的计算中不包括值为0的评分)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12