
掌握机器学习技术从这些编程语言和程式库开始
在我们之前分享的文章《一名合格的机器学习工程师需要具备的5项基本技能,你都get了吗?》收到了读者的热烈响应。在这片广受赞誉的文章当中我们向大家介绍了成为机器学习牛人所需具备的关键技能。现在,我们将来自读者关于上一篇文章的问题进行汇总,发现其中大家最关心的就是:掌握机器学习技能到底需要学会哪一种编程语言?
这个问题的答案或许会让你大跌眼镜——掌握哪一种编程语言都无关紧要!
因为只要你熟悉机器学习库以及你所使用编程语言的工具,这时候语言本身并不是很重要的问题。不同的编程语言具有各种类型的机器学习程式库。在选择编程语言及其工具的时候,你一定要以你在公司中职位的作用以及你正在努力完成的任务为选择参考对象,这样才能让你的工作成效更胜一筹。
R
R语言,是一种专门为统计计算目的所创建的编程语言,R语言在处理大规模数据挖掘、可视化和报告方面的优势无人能及。你可以轻松的获取大量的软件包,这些软件包可以让你运用绝大多数的机器学习算法、统计测试以及分析过程。这种编程语言本身具有非常优雅的特性,虽然在表述关系、转换数据以及在执行并行运算时的句法结构让人难以捉摸。
从KDNuggets最近发起的一份调查报告当中我们可以看到,尽管Python已经在过去的两年中积累了很高的人气,但是R语言仍是2015年度在数据分析、挖掘和数据科学领域内最受欢迎的一种编程语言。
KDNuggets2015年度民众调查:分析、数据挖掘数据科学任务所用的基本编程语言
MATLAB
由于MATLAB具备非常强悍的计算技术,包括执行复杂的数学表达式、丰富的代数与微积分支持功能、符号计算法以及适用于从数字信号处理到计算生物学等领域的大量工具包,因此MATLAB深受学术机构的青睐。这种语言经常被用来创建新的机器学习算法原型,在某些特定的情况中,可以形成完整的解决方案。这种语言也为商业用途的项目提供大量的许可证,但是仍然值得我们使用这种编程方式,因为它可以大大地节省科研开发的精力。虽然Octave拥有与MATLAB几乎相近的语法结构,并也可以作为MATLAB的代替工具,但是前者的工具箱数量有限并且其集成开发环境还远不如后者成熟。
Python
尽管Python是一种多用途的编程和脚本语言,但是仍不能妨碍它俘获了很多数据科学家和机器学习工程师的芳心。和R语言或者MATLAB不同的是,Python的数据处理和科学计算习惯用语并非建立在语言本身,而是建立在NumPy、SciPy和Pandas扩展包之上,这些扩展包以一种更容易实现的语法结构提供和Python相同功能的编程语言。
scikit-learn, Theano以及TensorFlow这种专业的机器学习程式库让你拥有使用分布式计算基础设施培训各种机器学习模型的能力。这些程式库的效率关键代码通常还是通过Python的封装包或者API插件包,经由C/C++或者由 Fortran编写而成。
Python生态系统的最大优势在于它可以简单地将复杂的端到端的产品或者服务整合到一起,比如使用了Django 或者Flask的网页应用程序,或者使用了PyQt的桌面应用程序,乃至使用了ROS的代理机器人。
Java
Java是软件工程师的编程语言之选,因为它可以整洁并持续地执行以目标为导向的编程项目,以及使用JVM系统的独立平台。为了清晰性和可靠性,它牺牲了简洁和灵活度,因此它在执行关键的企业系统方面的能力广受好评。为了维持相同水平的灵活性并避免乱写错误的接口,那些一直都在使用Java的公司为了开辟他们在机器学习方面的需求更倾向于坚持自己的选择。
除了可以提供用于分析和原型设计的用途之外,Java还有很多种用于建造大规模分布式学习系统的非常棒的选择,比如asSpark+MLlib、Mahout、H2O和Deeplearning4j。在类似Hadoop/HDFS这样工业化标准数据处理和储存系统的协同作用下,这些程序库和架构可以很好地发挥作用。
C/C++
C/C++是操作系统插件和网络协议这种低层级软件的理想选择,因为对于这些软件而言,计算速度和内存效率至关重要。也是由于同样的原因,它也是执行机器学习程序最受欢迎的手段。但是由于这种语言缺少数据处理所需的地道语言表达方式,并且内存管理所需的开销很大,导致了该语言不适合初学者,而且对于开发完整的端到端的系统而言这种编程语言反而会成为一种负担。
一旦植入了类似智能轿车、智能装置以及传感器这样的系统,我们就必须使用C/C++编程。在其他情况下,由于基础设施和特定应用程序的代码已经是现成的了,所以这种语言就显得特别的便利。在任何一种案例当中,C/C++语言从来不会缺少机器学习程序库,比如LibSVM, Shark和mlpack。
企业解决方案
除了这些语言和程序库之外,在受到更多监管的数据处理环境中,还有很多其他用于统计建模的商业产品和应用了机器学习模型的商业分析技术。包括RapidMiner、IBM SPSS、SAS+JMP和Stata在内的这些产品提供了可靠并且端到端的数据分析解决方案,同时还具备可供编程使用的API接口或者脚本语法。
最近在这个领域当中有新增了很多以云为基础的机器学习为服务的平台( Machine-Learning-as-a-Service platforms),比如Amazon Machine Learning、Google Prediction、IBM Watson和Microsoft AzureMachine Learning。这些平台可以帮助你扩大处理大量数据的学习解决方案,并快速地对不同的模型进行试验。只要是具备非常牢固的机器学习技术基础,那么使用新的产品或者平台工作就像学习使用一种新工具一般简单。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10