
中美企业在数据分析上的最大差异:增长黑客的实践
一、烧钱≠增长,数据驱动是一种能力
在过去10年,中国互联网发展速度非常快,以前是流量驱动的互联网经济。随着人力成本不断攀升,竞争不断加剧,完全靠流量、预算、烧钱来获取客户和市场,已经不可持续了。如果你获取客户的成本高、速度慢且代价大,导致商业价值不能涵盖成本,最终是无法盈利和变现的。
同样获取一个购买客户,在中国可能是美国 5 倍的成本。在中国任何垂直领域都不是一个真空的领域,总会存在跟你同样估值或融资额差不多的竞争对手。如果你花钱效率比别人高,那就很容易出类拔萃,甚至把竞争对手至于死地。而高效花钱的前提,就是要有数据支持,依照数据分析去花钱。
所以只有把效率提升,用相对快的速度,更低的成本,来帮助一个企业获得增长,才是一个公司的核心竞争力之一。
获取增长里的第一步就是做好产品,让用户能够停留在你的APP、网站和服务里。以前流量为王的时代,就像一个漏水的桶,因为进来的水量很大,哪怕它在猛烈地漏水,你的桶慢慢也能灌满。但今天你进来的水越来越少,漏水的速度干不上进水的速度,这个企业就不可能有任何实质性的增长。
所以我们会先帮助企业把产品做到非常高黏度,用户体验非常好、愿意天天来用的产品,就是不漏水的一只桶。然后再帮助企业有效率地优化各种渠道,把新的用户导进来,这样才能获得一种爆发式的增长。
二、中美企业的四大差异
实际上这套理论,在美国已经应用了多年,这也是我们回到中国后,看到的一个核心的区别。除此之外,还有四个非常大的差异在中国和美国整个企业的市场里:
1.是否有数据驱动意识的差异
中国为数很多的企业,还没有意识到数据驱动能为企业带来的巨大价值,或者说只有少数超大规模的公司意识到了这一点。大部分中国的企业,没有意识到数据的价值,使得创始人的决策、商业知觉远远重于数据驱动,这是我的第一个印象。
2.是否进行数据分析实践的差异
在美国,数据分析不管是产品还是方法论,已经很多年了。中国很多企业发展比较快,发展时间比较短,在实用操作能力上和美国有一定差异。这种高级数据分析的能力,基本只集中在几个领头的互联网或者大型企业里,其中互联网公司更具备这种能力,而大部分企业不具备这种操作经验和能力。
3.是否用数据做决策的差异
我们发现,在中国企业内用数据做决策的人,相对美国企业内部来说,比例比较低。像以前我工作过的LinkedIn里,不能说100%,但接近80-90% 的人,每天每周都在用数据做决策和优化。在国内,通过我们对客户的了解,包括对很多付费客户的了解,他们内部用这种决策的人相对来说很少。
4.是否用工具代替人力的差异
美国已经迭代到不是靠人力解决运营效率问题的时代,他们已经完全进入工具化、产品化、规模化时代。在中国很多企业里,还停留在准备大量雇佣人,大量雇佣高级的数据工程师、分析师,甚至建造整个数据这条体系的阶段,和美国之间的差异还是蛮大的。
这四点差异也决定了我们今天在中国做产品的形态:
第一:企业不太习惯用数据分析工具,觉得没有价值。
第二:数据分析实践没有什么太大的规模,只在一些核心的互联网公司里。
第三:内部人员使用数据分析工具的经验不够。
第四:数据分析工具化程度不足。
三、增长黑客的落地和实现
我相信大家都听说过增长黑客,增长黑客的核心概念,实际上在美国5年前就被提出来了,增长黑客核心概念的应用在15年前就开始了,而且是千变万化的。一句话概括增长黑客的核心概念就是:如何用数据来驱动你的产品迭代,用低成本的方式迅速获得增长。
我们想做增长黑客这个核心理论上的践行者和推动者,因为这套增长框架,是相对普世的,尤其是中国的创业者更加需要。中国大数据生态是技术先行于理论体系的,而美国是理论体系稍微先行于技术。比如增长的这套框架,不是一套产品实践的框架,而是一套商业管理方法论的框架,有了这套框架以后,用各种产品和工具来补足,就变得可执行了。
在中国大数据已经火爆了三四年,很多企业却还没有找到落地和变现的方法。实际上方法有很多,我们希望通过我们的产品,来帮助更多的企业落地这些方法论。增长这套方法论,已经被很多企业证明是有价值的,包括 LinkedIn、facebook、推特、airbnb都在实践,从企业建立半年后就可以开始应用了。这套方法论在国内有很大的需求,结合企业内部的运营,以及我们的工具一起,才能为企业产生价值。
我们还想通过我们的产品和践行,纠正一个误区。对很多中国互联网企业来说,他们认为只要接入了你的工具,立刻就能看到效率。实际上并不是这样,必须要把数据化运营这套方法论,结合到每一天的运营里去,同时很熟练地使用数据分析的工具。这是一个不断循环、不断提升的过程。我们在 LinkedIn 不是通过一个项目就带来了50% 的增长,而是很多个小的项目,不断演化、迭代,最后产生几何倍数的增长。
四、可以复制的 50%的增长
虽然说以前我是在LinkedIn内部数据科学团队里负责变现,但它整个体系的方法论,实际上是把整个美国企业化运营和管理最精华部分抽象出来,变成一种可复制、可学习、可扩展的能力,这种能力我很强烈地感受到中国企业是需要的。
为什么?其实很简单,从去年开始,我们开始给客户分享一些案例,他们都非常感兴趣,而且听完以后就立刻实践。我记得当时有一个客户看到我们GrowingIO,用自己的产品优化注册流的过程,我们一共花了7天的时间,把注册转化率提高了30%。这个客户当时还不是我们客户,只能说是潜在用户,他使用了我们的产品,同时几乎是完全照搬了我们优化自己网站的过程,就获得了 50% 的增长。当时给我们客户运营部门发了一个微信:照猫画虎做了一次,发现有很大的提升。
所以这种方法论加工具,才会为更多企业带来价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07