京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据探究经济衰退的到来
当今全球经济风起云涌,全球市场普遍不景气,资本缩水,油价下跌严重,诸多大企业纷纷裁员,一时间经济唱衰的声音越来越多。《大数据文摘--商业与金融专栏》今天刊登一篇全球顶级资本大鳄黑石集团(BlackRock)的内部分析,本文从大数据分析的角度阐述了预测未来全球经济走势的研究方法。
在如今市场的动荡之下,投资者们纷纷质疑经济是否在正确方向上。衰退的论调在决策者的评论和刊物中随处可见,然而投资者究竟是否需要担忧经济衰退的风险呢?我们的分析显示:衰退还未真正到来。与其听信一些传言,不如让大数据帮助我们正确的评估“衰退”一词有多频繁地被提及。探究使用衰退一词的人数可以让我们更清晰的了解人们对经济增长持有悲观态度。我们也可决定是否也应该担忧。对比不久前,我们发现关于衰退的讨论增加了:谷歌趋势的数据表明,人们在互联网搜索“衰退”一词更加频繁了。当“衰退”一词被公众更多的讨论时,我们需要知道实际经济体系中的决策者们是否也持有同样的观点? 投资者和商业领袖们是否和公众一样,对潜在的经济衰退持同样的看法呢?
◆ ◆ ◆
每个季度,BlackRock都会通过分析3000个财报电话会议,来比较CEO和CFO的话题和用词。我们通过研究这些用词中的微小变化来探究他们对热点话题的想法。同样的研究方法也被用于投资者向管理层提问的Q&A环节中。在过去的两个季度里,“衰退”一次确实被更频繁的在Q&A环节提及。然而,几乎没有证据表明管理团队的言论中有相似“衰退”一词的增长。回顾2008年的经融危机场景,这种对比的解释是投资者认为经济已经开始衰退,而管理团队并不这么看。我们同样使用机器阅读了通讯社的新闻报道,例如Dow Jones的文章中显示“衰退”一词的频率有轻微增加。然而08年的全球金融危机时,衰退这个词的增长是十分显著的。从下面的图表也可以看出,经济衰退现并不具有话题性。
金融市场是对预期经济表现和现有风险的反映。不幸的是,经济数据是由一些信息落后的、在经济衰退已经发生之后才知道亡羊补牢的经济学家所提供的。大部分的经济数据只能提供给我们几周甚至几个月前发生的事情。即使第一季度从1月1日到3月31日止,关于第一季度的GDP预估绝对不会在4月28日前发布。更重要的是,经济衰退被定义为连续两个季度的负增长。我们是否在经历衰退?7月29日再来问我吧!或者我们还没面临经济衰退,不过下个季度就开始了,我们在10月28日会告诉你的……你懂的。
收集所有的数据来计算(或者预计)GDP是一项浩大的工程——这就是为什么报告总是来的很迟。然而现在有一些更及时的数据能告诉我们现在的经济正在发生什么。正如你不需要依靠昨晚的天气预报来判断现在是否下雨——你可以看看窗外——我们也可以用一些确切的消息来掌握经济的脉搏。
现在,人们在实体店或网上消费,乘客和货物通过汽车、火车、海运和空运进行周转,个人和公司同样使用信用卡支付。“现测”意在提供一个即时的检测手段,来研究某些不能被实时监控的物体,比如总体经济活跃度。不幸的是,观测经济状态并不像往窗外看看是否下雨这么简单。信息被收集起来,在不同的时间段被检查:失业率每周报告一次,零售业绩每个月一次,GPD则是每个季度一次。不同的测量手段表现也各不相同:工业产品可能会暴涨或暴跌,取决于库存与订单;进出口货物则对汇率反应更加迟缓。幸运的是,有些方法可以解决这些困难。在图像处理软件中,为了寻找一个图片丢失的细节,他们可以通过对相似图片和周围的细节部分进行分析来完善图片。研究者采用相似的手段,来探究在一个季度的数据中到底发生了什么,来与月度报告做比较。统计软件同样可以用于将起伏较大的数据和平缓的数据混合。
◆ ◆ ◆
应用大数据“现测”新方法预测经济未来增长
为了“现测”衰退可能,我们收集了70个不同的数据来源,以提供一个描绘经济活动的画面。这些数据远远超过了典型的LEI,这其中包括了犯罪率,甚至机动车驾驶里程数。因为这些数据来源有着不同的采集频率和时间间隔,我们需要在这些障碍中搭建“桥梁”使他们能形成一个可比较的数据流。通过一个叫Principal Component Analysis(PCA)的统计软件,我们提取出了一个指数,可以说明这系列数据中的大部分变化。这一个变量可以体现当下经济的总体健康状况。我们的“现测”经济健康指数每周更新,并体现了经济活动变化的即时表现。
当指数小于零的时候,说明NBER定义的经济衰退已经来临。我们同样将具体的70个原始数据输入以获得经济具体部分的图景(如花费和信用增长)在下图中,我们将NBER经济衰退周期和我们的指数叠加。如图所示,这个巨大的下降说明了我们的指数对经济衰退的响应度非常好。更重要的是,我们可以看到相似的趋势也在信用和消费上有所表现。指数同样表明,当经济活动减缓时,与过去的三个经济衰退期相比,整体依然健康,就业率依然坚挺,即使最后一张图表明总生产在一定程度上开始减缓增长。
所以经济衰退是否近在眼前?正如之前所说,我们的分析表明衰退并未到来。不过幸亏有大数据和“现测”,我们才不需要依赖事实发生之后的亡羊补牢,同时也可用更好的工具去探究经济衰退的到来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10