京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用主成分法解决多重共线性问题
一、多重共线性的表现
线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系。看似相互独立的指标本质上是相同的,是可以相互代替的,但是完全共线性的情况并不多见,一般出现的是在一定程度上的共线性,即近似共线性。
二、多重共线性的后果
1.理论后果
多重共线性是因为变量之间的相关程度比较高。
按布兰查德认为, 在计量经济学中, 多重共线性实质上是一个“微数缺测性”问题,就是说多重共线性其实是由样本容量太小所造成,当样本容量越小,多重共线性越严重。
多重共线性的理论主要后果:
(1)完全共线性下参数估计量不存在;
(2)近似共线性下OLS估计量非有效;
(3)模型的预测功能失效;
(4)参数估计量经济含义不合理
2.现实后果
(1)各个解释变量对指标最后结论影响很难精确鉴别;
(2)置信区间比原本宽,使得接受假设的概率更大;
(3)统计量不显著;
(4)拟合优度的平方会很大;
(5)OLS估计量及其标准误对数据微小的变化也会很敏感。
三、多重共线性产生的原因
2. 由于研究的经济变量随时间往往有共同的变化趋势,他们之间存在着共性。例如当经济繁荣时,反映经济情况的指标有可能按着某种比例关系增长
3. 滞后变量。滞后变量的引入也会产生多重共线行,例如本期的消费水平除受本期的收入影响之外,还有可能受前期的收入影响,建立模型时,本期的收入水平就有可能和前期的收入水平存在着共线性。
四、多重共线性的识别
1.方差扩大因子法( VIF)
一般认为如果最大的VIF超过10,常常表示存在多重共线性。
2.容差容忍定法
如果容差(tolerance)<=0.1,常常表示存在多重共线性。
3. 条件索引
条件索引(condition index)>10,可以说明存在比较严重的共线性。
五、多重共线性的处理方法
处理方法有多重增加样本容量、剔除因子法、PLS(偏最小二乘法)、岭回归法、主成分法。
今天着重介绍——主成分法。
当自变量间有较强的线性相关性时,利用个p个变量的主成分,所具有的性质,如果他们是互不相关的,可由前m个主成z1、z2、zm来建立回归模型。
由原始变量的观测数据计算前个主成分的得分值,将其作为主成分的观测值,建立Y与主成分的回归模型即得回归方程。这时p元降为m元,这样既简化了回归方程的结构,且消除了变量间相关性带来的影响
六、实际的应用
我们以下这个模型分析主营业务利润的影响
Opinci,t=a0+a1*Intani,t+a2*Ppei,t+a3*Opinci,t-1+a4*Levi,t+a5*Asseti,t +ξi,t
1、回归分析
2、结果
对自变量主成分法从多重共线性的识别方法来看,此模型中存在共线性问题,Ppei,t是影响因子。
3、对自变量主成分法
由于spss没有独立的主成分分析模块,需要在因子分析里完成,因此需要特别注意。
在数据窗口下选择“分析”—“降维”—“因子分析。

3.1 结果
从KMO 和 Bartlett 的检验得知p<0.001,KMO检验通过,适合做主成分或因子分析,从解释的总方差表里初始特征值两个主成分(初始因子)贡献率已达86.89%,提取前两个主成分用于分析。
由成分矩阵和表解释的总方差可计算前两个特征向量,用成分矩阵前两列分别除以前两个特征值的平方根得前两个主成分表达式:
F1=0.4726Opinci,t-1+0.4854 Instani,t +0.5371Ppei,t+ 0.0534Levi,t+ 0.4995Asseti,t(式1)
F2=-0.1219Opinci,t-1-0.0510Instani,t -0.0497 Ppei,t+ 0.9837Levi,t+0.1131 Asseti,t(式2)
其中Opinci,t-1、 Instani,t 、Ppei,t、 Levi,t、 Asseti,t表示为标准化变量(这是因为在进行主成分分析时是以标准化变量进行分析的,是从相关阵出发分析的)
由于主成分互不相关,可以用提取的主成分代替自变量进行回归分析,因此需要计算主成分得分来代替自变量Opinci,t-1、 Instani,t 、Ppei,t、 Levi,t、 Asseti,t。
主成分的计算:依据式1和2中两个主成分的表达式,对各自变量标准化后带入就可以计算出每个样品的主成分得分。
但是在spss中,由因子分析提取时是用主成分法提取的,根据初始因子与主成分的关系,未旋转的初始因子等于主成分除以特征根的平方根,因此主成分得分等于因子得分乘以特征根的平方根,可以由因子得分计算主成分得分。
前面在因子分析选项中保存了因子得分(因子得分保存变量),因此计算两个主成分得分:点击“转换”—“计算变量”。
在弹出的窗口分别定义主成分
F1=第一因子得分*第一特征根的平方根
F2=第二因子得分*第二特征根的平方根
(3)主成分回归过程
要做主成分回归,需要用标准化的因变量(因为自变量经过标准化处理做主成分分析,因变量需要对应做标准化)与主成分做回归,对因变量Opinci,t做标准化处理。
点击“分析”-“描述统计”-“描述”,在弹出窗口中将Opinci,t调入变量,并选中“将标准化得分另存为变量”后确定完成Opinci,t的标准化。
点击“分析”-“回归”-“线性”在弹出窗口中将Z主营业务利润(y)调入因变量,F1和F2调入自变量,其他选项如前,然后点击“确定”运行主成分回归。
相关输出结果:
由表可知,标准化Opinci,t对两个主成分的线性回归p<0.001,通过显著性检验,没有多重共线性,回归系数合理。
Zscore:(Opinci,t) =0.475F1-0.117F2,将前面F1、F2的表达式(式1和2)带入可得标准化Opinci,t关于标准化自变量的回归方程:
Zscore:(Opinci,t)=
0.2388Opinci,t-1+0.2365Instani,t +0.2609Ppei,t-0.0897Levi,t+ 0.2240Asseti,t
求得最终回归结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12