京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘中,被常拿来说的啤酒尿布的例子就是一个很典型的运用关联算法来做购物来分析的例子。常被用于交易数据、关系数据的分析,发现数据集中隐藏的频繁模式,这些频繁模式可以用关联规则的形式表示,有效的关联规则对商家的商品进出货摆放都有很大的指导意义。
设 是项的集合,数据集D是事务的集合,每项事务T是一个非空项集,且T是I的非空子集。每项事务都有一个唯一标识符,定义为TID,A和B均为事务T中的非空子集,并且A和B无交集。则规则
成立,支持度s是D中同时包含A和B的事务所占的百分比,置信度c是包含A的事务中包含B的事务的百分比。如下:
频繁模式中同时满足最小支持度阈值和最小置信度阈值的为强关联规则。
1. 找出所有频繁项集。每个项集出现频次大于最小支持计数。
2. 由频繁项集得到强关联规则。这些规则同时满足最小支持度阈值和最小置信度阈值。
Apriori先验算法,基于先验性质:频繁项集的所有非空子集也一定是频繁的。
针对水平数据{TID:item_set}
发现频繁集的过程
1. 扫描找出候选项集(初始扫描D得到候选项集
)
2. 计算支持度计数,与最小支持度计数比较得到频繁项集
3. 自连接产生候选项集
4. 重复2-3的过程,直到得到最大频繁项集 。
由频繁项集得到强关联规则的过程
1. 对中每一项L,取其所有非空子集
2. 若对于L的某一非空子集S,若置信度大于最小支持度阈值
3. 则产生强规则:
以下截图为《数据挖掘:概念与技术》中第六章Apriori获取频繁集过程示例。
Apriori算法的缺陷:可能产生大量候选集,可能需要重复扫描整个数据库匹配检查一个很大的候选集合。空间时间的花费会很大。
频繁模式树增长算法,产生FP数,由树递归推演得到频繁模式。
针对水平数据{TID:item_set}
发现频繁集的过程
1. 第一次扫描D,并对比最小支持度计数,取1项频繁集L
2. 1项频繁集L按支持度计数降序排列
3. 创建数的根节点,用null标记
4. 第二次扫描D,D中每一项事务中的想都按L中的次序处理,为每个事务创建一个分支
5. 结点不存在时,新建结点,结点计数赋值为1;结点已存在时,结点计数加1
6. 从频繁集L的最后一项开始,对其每一项找到所有含该项的分支路径。
7. 路径中的结点计数即为该路径下所有节点所组成的项集,在该分支的计数
8. 合并每一分支的项集,获取频繁集
以下截图为《数据挖掘:概念与技术》中第六章FP-Growth获取频繁集过程示例。
Eclat
等价类变换
垂直数据格式{item:TID_set}
发现频繁集的过程
1. 对每频繁项的TID集取交集
2. 重复上述过程直至没有更大频繁集
以下截图为《数据挖掘:概念与技术》中第六章Eclat获取频繁集过程示例。
判断规则的有效性
提升度:
Lift=1,A和B独立不相关,lift<1,A和B负相关,lift>1,A和B正相关。
相关性分析:
全置信度:
最大置信度:
Kulczynski(Kulc):
余弦:
后面四项度量值取值范围都是0~1,并且值越大A和B的联系越紧密。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27