
数据挖掘中,被常拿来说的啤酒尿布的例子就是一个很典型的运用关联算法来做购物来分析的例子。常被用于交易数据、关系数据的分析,发现数据集中隐藏的频繁模式,这些频繁模式可以用关联规则的形式表示,有效的关联规则对商家的商品进出货摆放都有很大的指导意义。
设 是项的集合,数据集D是事务的集合,每项事务T是一个非空项集,且T是I的非空子集。每项事务都有一个唯一标识符,定义为TID,A和B均为事务T中的非空子集,并且A和B无交集。则规则
成立,支持度s是D中同时包含A和B的事务所占的百分比,置信度c是包含A的事务中包含B的事务的百分比。如下:
频繁模式中同时满足最小支持度阈值和最小置信度阈值的为强关联规则。
1. 找出所有频繁项集。每个项集出现频次大于最小支持计数。
2. 由频繁项集得到强关联规则。这些规则同时满足最小支持度阈值和最小置信度阈值。
Apriori先验算法,基于先验性质:频繁项集的所有非空子集也一定是频繁的。
针对水平数据{TID:item_set}
发现频繁集的过程
1. 扫描找出候选项集(初始扫描D得到候选项集
)
2. 计算支持度计数,与最小支持度计数比较得到频繁项集
3. 自连接产生候选项集
4. 重复2-3的过程,直到得到最大频繁项集 。
由频繁项集得到强关联规则的过程
1. 对中每一项L,取其所有非空子集
2. 若对于L的某一非空子集S,若置信度大于最小支持度阈值
3. 则产生强规则:
以下截图为《数据挖掘:概念与技术》中第六章Apriori获取频繁集过程示例。
Apriori算法的缺陷:可能产生大量候选集,可能需要重复扫描整个数据库匹配检查一个很大的候选集合。空间时间的花费会很大。
频繁模式树增长算法,产生FP数,由树递归推演得到频繁模式。
针对水平数据{TID:item_set}
发现频繁集的过程
1. 第一次扫描D,并对比最小支持度计数,取1项频繁集L
2. 1项频繁集L按支持度计数降序排列
3. 创建数的根节点,用null标记
4. 第二次扫描D,D中每一项事务中的想都按L中的次序处理,为每个事务创建一个分支
5. 结点不存在时,新建结点,结点计数赋值为1;结点已存在时,结点计数加1
6. 从频繁集L的最后一项开始,对其每一项找到所有含该项的分支路径。
7. 路径中的结点计数即为该路径下所有节点所组成的项集,在该分支的计数
8. 合并每一分支的项集,获取频繁集
以下截图为《数据挖掘:概念与技术》中第六章FP-Growth获取频繁集过程示例。
Eclat
等价类变换
垂直数据格式{item:TID_set}
发现频繁集的过程
1. 对每频繁项的TID集取交集
2. 重复上述过程直至没有更大频繁集
以下截图为《数据挖掘:概念与技术》中第六章Eclat获取频繁集过程示例。
判断规则的有效性
提升度:
Lift=1,A和B独立不相关,lift<1,A和B负相关,lift>1,A和B正相关。
相关性分析:
全置信度:
最大置信度:
Kulczynski(Kulc):
余弦:
后面四项度量值取值范围都是0~1,并且值越大A和B的联系越紧密。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07