京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据自动分析法的崛起
十多年来,我谈论过的只有三类分析法:描述(descriptive)和预测(predictive)以及规范(prescriptive)分析。这个分析法三元组在我这里工作得非常好,很多其他人也在使用。

描述分析描述发生了什么,这类方法通常使用简单的描述工具:频次分布、图表以及“中心趋向性测度”(如均值、中值)。它们只和过去有关,习惯上称这类分析法为“报告”,它占据了大约95%的历史性分析活动。
预测性分析显而易见是预测未来。这类方法使用模型描述过去的数据(遗憾的是,我们只拥有过去的数据)外推(extrapolate)将来。它们很有用,正如Eric Siegel所著《预测分析法》(Predictive Analysis)中的章节标题:去“预测谁会点击、购买、撒谎或者死亡”。
有些分析家们,比如Gartner公司的分析家们,在描述和预测之间额外加入了一类分析,并称之为诊断(diagnostic)分析,用以描述如何使用过去的数据创建模型。说这些分析家是对的,在于这一工作是预测分析的先决条件;但有人仍对此有所争论,说它只是简单的使用统计模型的描述分析法。我也犹豫于在自己的工作中使用它,因为它不是以“-tive”结尾的单词。
规范分析(又译为时效分析)是告诉你“如何做”的分析方法,多年前在这里我已写过一些文字。这类方法建议(通常是给一线工作者)最好的方式去处理给定情况。例如:产品如何定价,使用哪个版本的网页,驾驶导航线路下一个转向是什么,所有这些都是规范分析。
现在,是时候添加第四个类别——自动分析(automated analytics)。遗憾的是,无论是单词“automated”或我所能找到的其同义词,都不是已“-tive“结尾。或许,新单词”automative“可能比较恰当。无论如何,分析法正在不断变得“自动“起来。不同于规范分析给人某个推荐,自动分析会基于分析结果采取行动。它们会自动改变在线价格,自动显示最好的着陆页(landing page),自动确定给用户发送什么邮件,甚至自动驾驶车辆。
一些自动分析已存在多年。你不会认为航空公司会派人来审核座位价格的变化吧?这样做需要所有雇员,甚至更多。你不会认为银行高级职员会审核你的信用卡或个人贷款申请吧?那些都是自动的,因为银行高级职员深思熟虑的,是你意图的收费或借款是否有欺诈。如果这些不是自动的,等到有人查看可能的欺诈交易的时候,欺诈者应当早已作案多起后飞到了委内瑞拉去了。
在这个用户期望实时响应的世界,自动分析日趋必要。在现实世界中,每个市场促销都应该是量身定制和个性化的,数据无处不在并且需要被分析后使其有用。我们确实没有足够的人力去分析所有数据,做所有的决定,进而采取必要的行动。即使我们这么做了,也会花费非常长的时间才能成这些事情。
自动分析,如同我所定义的,是基于分析法如何被使用。这个术语不应混淆于以自动或半自动方式,它们是通过如 机器学习 为工具来实现分析的生成。这种更为常见,且其存在也部分地基于同样原因——太多数据需要分析,且没有足够的分析师。
为了能有效的工作,自动化分析特别需要被嵌入到为分析提供数据的系统中,然后在得到分析结果后采取行动。Gartner 2015战略科技列表中的“高级的、普遍存在的和不可见的分析”,以及很多其它分析将被自动化。被嵌入自动化分析的那些系统,会被归为“复杂事件处理”家族,它们被设计为实时采取行动。在其数据仓库和Hadoop集群中,组织机构也日趋进行自动化分析。这一集成意味着,自动化分析需要被紧密连接到信息技术机构和CIO;这一类分析法不再是分开的、临时的行为。
这通常是一个贯穿不同类别分析法的自然发展过程。例如,你是一个货运公司,你想最小化你的汽油消耗。第一步,应该是做音协描述性分析,看看不同线路的卡车的耗油情况,耗油量延时间是增长还是下降,甚至于是否某些司机每公里耗油比其他司机多。第二步,应当是建立一个预测模型,其特性与更大的油耗相关联,或许使用某种形式的回归分析。第三步,应该是开始告诉司机什么时候在什么地点加油,这正是哟写公司,如施奈德(Schneider National),正在做的事。第四步,将是绕过驾驶员直接告诉卡车什么时候停车加油。显然,第四步包含比现在更多的车辆自动化,但若干领导性货运公司告诉我,从技术角度讲这一步并不遥远,监管许可反而可能需要更长时间。
当然,相比规范分析,自动分析给人类提出了更多的难题。试想,当卡车司机被告知在哪个停留站加油,他们会怎么想。我猜,当由分析算法做出所有驾驶决定的时候,司机们会更加不乐意。
自动分析是一个全新的世界,我们会长期持续地评价他们可能带来的后果。但是,越早认定它们是一类有效且重要的分析方法,就可以越快开始处理它们带来的后果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01