
大数据自动分析法的崛起
十多年来,我谈论过的只有三类分析法:描述(descriptive)和预测(predictive)以及规范(prescriptive)分析。这个分析法三元组在我这里工作得非常好,很多其他人也在使用。
描述分析描述发生了什么,这类方法通常使用简单的描述工具:频次分布、图表以及“中心趋向性测度”(如均值、中值)。它们只和过去有关,习惯上称这类分析法为“报告”,它占据了大约95%的历史性分析活动。
预测性分析显而易见是预测未来。这类方法使用模型描述过去的数据(遗憾的是,我们只拥有过去的数据)外推(extrapolate)将来。它们很有用,正如Eric Siegel所著《预测分析法》(Predictive Analysis)中的章节标题:去“预测谁会点击、购买、撒谎或者死亡”。
有些分析家们,比如Gartner公司的分析家们,在描述和预测之间额外加入了一类分析,并称之为诊断(diagnostic)分析,用以描述如何使用过去的数据创建模型。说这些分析家是对的,在于这一工作是预测分析的先决条件;但有人仍对此有所争论,说它只是简单的使用统计模型的描述分析法。我也犹豫于在自己的工作中使用它,因为它不是以“-tive”结尾的单词。
规范分析(又译为时效分析)是告诉你“如何做”的分析方法,多年前在这里我已写过一些文字。这类方法建议(通常是给一线工作者)最好的方式去处理给定情况。例如:产品如何定价,使用哪个版本的网页,驾驶导航线路下一个转向是什么,所有这些都是规范分析。
现在,是时候添加第四个类别——自动分析(automated analytics)。遗憾的是,无论是单词“automated”或我所能找到的其同义词,都不是已“-tive“结尾。或许,新单词”automative“可能比较恰当。无论如何,分析法正在不断变得“自动“起来。不同于规范分析给人某个推荐,自动分析会基于分析结果采取行动。它们会自动改变在线价格,自动显示最好的着陆页(landing page),自动确定给用户发送什么邮件,甚至自动驾驶车辆。
一些自动分析已存在多年。你不会认为航空公司会派人来审核座位价格的变化吧?这样做需要所有雇员,甚至更多。你不会认为银行高级职员会审核你的信用卡或个人贷款申请吧?那些都是自动的,因为银行高级职员深思熟虑的,是你意图的收费或借款是否有欺诈。如果这些不是自动的,等到有人查看可能的欺诈交易的时候,欺诈者应当早已作案多起后飞到了委内瑞拉去了。
在这个用户期望实时响应的世界,自动分析日趋必要。在现实世界中,每个市场促销都应该是量身定制和个性化的,数据无处不在并且需要被分析后使其有用。我们确实没有足够的人力去分析所有数据,做所有的决定,进而采取必要的行动。即使我们这么做了,也会花费非常长的时间才能成这些事情。
自动分析,如同我所定义的,是基于分析法如何被使用。这个术语不应混淆于以自动或半自动方式,它们是通过如 机器学习 为工具来实现分析的生成。这种更为常见,且其存在也部分地基于同样原因——太多数据需要分析,且没有足够的分析师。
为了能有效的工作,自动化分析特别需要被嵌入到为分析提供数据的系统中,然后在得到分析结果后采取行动。Gartner 2015战略科技列表中的“高级的、普遍存在的和不可见的分析”,以及很多其它分析将被自动化。被嵌入自动化分析的那些系统,会被归为“复杂事件处理”家族,它们被设计为实时采取行动。在其数据仓库和Hadoop集群中,组织机构也日趋进行自动化分析。这一集成意味着,自动化分析需要被紧密连接到信息技术机构和CIO;这一类分析法不再是分开的、临时的行为。
这通常是一个贯穿不同类别分析法的自然发展过程。例如,你是一个货运公司,你想最小化你的汽油消耗。第一步,应该是做音协描述性分析,看看不同线路的卡车的耗油情况,耗油量延时间是增长还是下降,甚至于是否某些司机每公里耗油比其他司机多。第二步,应当是建立一个预测模型,其特性与更大的油耗相关联,或许使用某种形式的回归分析。第三步,应该是开始告诉司机什么时候在什么地点加油,这正是哟写公司,如施奈德(Schneider National),正在做的事。第四步,将是绕过驾驶员直接告诉卡车什么时候停车加油。显然,第四步包含比现在更多的车辆自动化,但若干领导性货运公司告诉我,从技术角度讲这一步并不遥远,监管许可反而可能需要更长时间。
当然,相比规范分析,自动分析给人类提出了更多的难题。试想,当卡车司机被告知在哪个停留站加油,他们会怎么想。我猜,当由分析算法做出所有驾驶决定的时候,司机们会更加不乐意。
自动分析是一个全新的世界,我们会长期持续地评价他们可能带来的后果。但是,越早认定它们是一类有效且重要的分析方法,就可以越快开始处理它们带来的后果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07