
传统的ROI数据分析
决定对一数据分析项目投资多少并在之后评估投资的成功可能性是个复杂的过程。通常的复杂性是由项目的复杂性、投资和实现收益之间的时间差以确定实际成本和价值的难度决定的。然而,无论如何,大多数易于或难于执行的决策都基于对投资回报率(Return On Investment,ROI)进行的计算,不管是用一套正式的ROI计算方法还是对“价值是否大于投资”进行非正式的评估都是如此。
计算ROI的概念很简单,但实际执行过程会很复杂。尽管有难度,但ROI在为初始投资制定业务案例时很有用,而且也可以在事后用来评估投资。以下是对传统ROI计算方法进行介绍,并给出在数据分析领域计算ROI时的注意事项。
传统的ROI会让数据分析人员计算一个简单的公式:
ROI=(总体价值/收益-总体投资成本)/总体投资成本
当它是业务案例的一部分时,人们会以两种方式来使用这种计算方法。第一种:如果这个简单的计算结果是这个正数,这就意味投资成本小于所获得的价值。因此,投资就会有一个积极的回报,是一个潜在的“好”投资。同样地,如果结果是个负数,它就不是一个好投资。第二种使用这种计算的方法是比较投资机会。通常人们会以这种比例关系来表示ROI计算值,以此来规范化结果并提供一个比较其他投资机会的基础。在很多组织中,这个比率必须超过资源分配决策中考虑投入资金的最低额度。
现在,让我们考虑一个简单的例子。假设某家零售公司正在评估一个数据分析项目潜在投资回报率,目的是产生一次更加成功的直邮促销活动。公司计划基于所选择的条件构建一个高潜力客户模型,并在之后为这些客户深入研究其CRM数据。与过去一年只发送邮件给所有消费超过500美金的客户的方式相反,公司只会发送邮件给那些满足所选附加条件的客户。为了构建和运行这个模型,对这个数据分析项目的投资是5万美金。计算得出的期望收益是7.5万美金。把这些数字代入ROI方程式会产生这一公式:
ROI=($75,000-$50,000)/$50,000=$25,000/$50,000=50%
很明显,如果第二个项目成本是10万美金,期望收益是13万美金,那么ROI就是30%。
那么我们要拿这些ROI数字做什么呢?首先,既然这两个项目都是回报大于成本(因为计算出的ROI是正数),如果预算允许,那么我们队两者都要进行投资。或者,内部预算政策规定只能对回报率不低于40%的项目进行投资。那么,第一个投资项目就跳过了这个障碍,而第二个没有。
如果我们只能对一个项目进行投资(可能这些项目所需资源和人员相同,但不能同时被这两个项目使用),那么我们就要对这些项目的投资金额进行比较。投资回报率50%大于投资回报率30%,所以我们更加倾向于第一个项目。但同时,第一个投资项目的实际收益金额远小于第二个投资项目的实际收益金额(7.5万美金对13万美金),这就支持了对第二个项目进行投资的决策。有了这些计算方法,预算委员会或决策制定者就能制定出实际的决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07