
大数据最具潜力的三大应用领域
大数据在企业商业智能、公共服务和市场营销三个领域拥有巨大的应用潜力和商机。
今天,大数据似乎成了万灵药,从总统竞选到奥斯卡颁奖、从web安全到灾难预测,正如那句俗语:“当你手里有了锤子,什么都看上去像钉子。”当IT经理成功部署一套Hadoop系统后,任何事看上去都与大数据有关(事实也是如此)。类似的事情在云计算的普及中也出现过,一开始大家认为所有的IT都可以搬到云端,而现实是我们依然需要虚拟化技术和基础设施。
对于大数据来说,如果IT经理们初期不能正确选择应用领域,有可能会导致达不到期望值,招致麻烦。其实,综合来看,未来几年大数据在商业智能、政府服务和市场营销三个领域的应用非常值得看好,大多数大数据案例和预算将发生在这三个领域。
过去几十年,分析师们都依赖来自Hyperion、Microstrategy和Cognos的BI产品分析海量数据并生成报告。数据仓库和BI工具能够很好地回答类似这样的问题:“某某人本季度的销售业绩是多少?”(基于结构化数据),但如果涉及决策和规划方面的问题,由于不能快速处理非结构化数据,传统的BI会非常吃力和昂贵。
大多数传统BI工具都受到以下两个方面的局限:
首先,它们都是“预设-抓取”工具,由分析师预先确定收集什么数据用于分析。
其次,它们都专注于报告“已知的未知”(Known unknowns),也就是我们知道问题是什么,然后去找答案。(而大数据会给出一些未知的未知,也就是你没有想到的一些问题的结果)
传统BI工具主要用于企业运营,侧重于成本控制和计划执行报告。
而大数据技术最主要的功能/应用是ETL(Extract、Transform、Load)。将近80%的Hadoop应用都与ETL有关,例如在导入Vertica这样的分析数据库之前对日志文件或传感器数据的处理。
今天计算和存储硬件变得非常便宜,配合大量的开源大数据工具,人们可以非常“奢侈”地先抓取大量数据再考虑分析命题。可以说,低廉的计算资源正在改变我们使用数据的方式。
此外,处理性能的大幅提高(例如内存计算)使得实时互动分析更加容易实现,而“实时”和“预测”将BI带到了一个新的境界——未知的未知。这也是大数据分析与传统BI之间最大的区别。
今天的大数据技术还处于战国时期,未来几年,随着企业间的兼并和新产品的不断推出,BI厂商们将能推出完善的,让CEO感到满意的“大数据套件”,但这并不意味着企业IT经理们的工作将受到威胁。因为正如云计算在理想和现实间达成妥协一样,大数据也会经历类似的发展过程。传统的BI工具将与大数据分析并存。
公共服务
大数据另外一个重大的应用领域是社会和政府。如今,数据挖掘已经能够预测疾病暴发、理解交通模型并改善教育。
今天,城市正面临预算超支、基础设施难题以及从农村和郊区涌入的大量人口。这些都是非常紧迫的问题,而城市,也正是大数据计划的绝佳实验室。
以纽约这样的大都市为例,政府公共数据公开化、以及市民生活的高度数字化(购物、交通、医疗等)等都是大数据分析的理想对象。
客观的市政数据,是消除争端,维系公民社会的最佳纽带。当然,前提是让公民能够访问这些数据。苹果的Siri和谷歌的Google Now都具备成为个人化助理的潜力。当然,我们还需要更多的产品和技术让数据分析结果更容易被公众理解和接受(数据可视化)。此外,IBM的Watson以及Wolfram Alpha这样的人工智能技术还能实现与用户的互动。
今天,智能手机(以及Twitter等社交网络)的普及让人类社会首次实现了公民的联网。应用程序商店实时上已经打通了政府和公民之间的应用层面的通道。(例如奥运期间伦敦警察厅发布的iphone通缉程序)。伴随着各国政务的数字化进程,以及政务数据的透明化,公民将能准确了解政府的运作效率。这是不可逆转的历史潮流,同时也是大数据最具潜力的应用领域之一。
市场营销
大数据的第三大应用领域是市场营销。具体来说,是提升消费者与企业之间的关系。(卖得更多、更快、更有效率)
今天,最大的数据系统是web分析、广告优化等。今天的数字化营销与传统营销最大的区别就是个性化和精准定位。
如今,企业与客户之间的接触点也发生了翻天覆地的变化,从过去的电话和邮件地址,发展到网页、社交媒体账户、博客等等。在这些五花八门的渠道里跟踪客户,将他们的每一次点击、收藏、“顶”、分享、加好友、转发等行为纳入企业的销售漏斗中并转化成收入是一个巨大的挑战。也就是所谓的“360度客户视角”。
大数据已经与在线营销交织在一起,其应用可以分为两大类:
首先,从线上到线下。配备了NFC近场通讯技术的智能手机和基于位置的签到正在成为营销人员的最新利器。他们将能跟踪商场人流,把在线零售的分析优化应用于线下。
其次,数据分析工具将更加容易使用(面向中小企业应用的大数据创业非常火爆),中小企业也许没有BI平台,但他们都有平板电脑和智能手机,移动版客户智能分析将会改变企业使用营销工具的方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30