
大数据最具潜力的三大应用领域
大数据在企业商业智能、公共服务和市场营销三个领域拥有巨大的应用潜力和商机。
今天,大数据似乎成了万灵药,从总统竞选到奥斯卡颁奖、从web安全到灾难预测,正如那句俗语:“当你手里有了锤子,什么都看上去像钉子。”当IT经理成功部署一套Hadoop系统后,任何事看上去都与大数据有关(事实也是如此)。类似的事情在云计算的普及中也出现过,一开始大家认为所有的IT都可以搬到云端,而现实是我们依然需要虚拟化技术和基础设施。
对于大数据来说,如果IT经理们初期不能正确选择应用领域,有可能会导致达不到期望值,招致麻烦。其实,综合来看,未来几年大数据在商业智能、政府服务和市场营销三个领域的应用非常值得看好,大多数大数据案例和预算将发生在这三个领域。
过去几十年,分析师们都依赖来自Hyperion、Microstrategy和Cognos的BI产品分析海量数据并生成报告。数据仓库和BI工具能够很好地回答类似这样的问题:“某某人本季度的销售业绩是多少?”(基于结构化数据),但如果涉及决策和规划方面的问题,由于不能快速处理非结构化数据,传统的BI会非常吃力和昂贵。
大多数传统BI工具都受到以下两个方面的局限:
首先,它们都是“预设-抓取”工具,由分析师预先确定收集什么数据用于分析。
其次,它们都专注于报告“已知的未知”(Known unknowns),也就是我们知道问题是什么,然后去找答案。(而大数据会给出一些未知的未知,也就是你没有想到的一些问题的结果)
传统BI工具主要用于企业运营,侧重于成本控制和计划执行报告。
而大数据技术最主要的功能/应用是ETL(Extract、Transform、Load)。将近80%的Hadoop应用都与ETL有关,例如在导入Vertica这样的分析数据库之前对日志文件或传感器数据的处理。
今天计算和存储硬件变得非常便宜,配合大量的开源大数据工具,人们可以非常“奢侈”地先抓取大量数据再考虑分析命题。可以说,低廉的计算资源正在改变我们使用数据的方式。
此外,处理性能的大幅提高(例如内存计算)使得实时互动分析更加容易实现,而“实时”和“预测”将BI带到了一个新的境界——未知的未知。这也是大数据分析与传统BI之间最大的区别。
今天的大数据技术还处于战国时期,未来几年,随着企业间的兼并和新产品的不断推出,BI厂商们将能推出完善的,让CEO感到满意的“大数据套件”,但这并不意味着企业IT经理们的工作将受到威胁。因为正如云计算在理想和现实间达成妥协一样,大数据也会经历类似的发展过程。传统的BI工具将与大数据分析并存。
公共服务
大数据另外一个重大的应用领域是社会和政府。如今,数据挖掘已经能够预测疾病暴发、理解交通模型并改善教育。
今天,城市正面临预算超支、基础设施难题以及从农村和郊区涌入的大量人口。这些都是非常紧迫的问题,而城市,也正是大数据计划的绝佳实验室。
以纽约这样的大都市为例,政府公共数据公开化、以及市民生活的高度数字化(购物、交通、医疗等)等都是大数据分析的理想对象。
客观的市政数据,是消除争端,维系公民社会的最佳纽带。当然,前提是让公民能够访问这些数据。苹果的Siri和谷歌的Google Now都具备成为个人化助理的潜力。当然,我们还需要更多的产品和技术让数据分析结果更容易被公众理解和接受(数据可视化)。此外,IBM的Watson以及Wolfram Alpha这样的人工智能技术还能实现与用户的互动。
今天,智能手机(以及Twitter等社交网络)的普及让人类社会首次实现了公民的联网。应用程序商店实时上已经打通了政府和公民之间的应用层面的通道。(例如奥运期间伦敦警察厅发布的iphone通缉程序)。伴随着各国政务的数字化进程,以及政务数据的透明化,公民将能准确了解政府的运作效率。这是不可逆转的历史潮流,同时也是大数据最具潜力的应用领域之一。
市场营销
大数据的第三大应用领域是市场营销。具体来说,是提升消费者与企业之间的关系。(卖得更多、更快、更有效率)
今天,最大的数据系统是web分析、广告优化等。今天的数字化营销与传统营销最大的区别就是个性化和精准定位。
如今,企业与客户之间的接触点也发生了翻天覆地的变化,从过去的电话和邮件地址,发展到网页、社交媒体账户、博客等等。在这些五花八门的渠道里跟踪客户,将他们的每一次点击、收藏、“顶”、分享、加好友、转发等行为纳入企业的销售漏斗中并转化成收入是一个巨大的挑战。也就是所谓的“360度客户视角”。
大数据已经与在线营销交织在一起,其应用可以分为两大类:
首先,从线上到线下。配备了NFC近场通讯技术的智能手机和基于位置的签到正在成为营销人员的最新利器。他们将能跟踪商场人流,把在线零售的分析优化应用于线下。
其次,数据分析工具将更加容易使用(面向中小企业应用的大数据创业非常火爆),中小企业也许没有BI平台,但他们都有平板电脑和智能手机,移动版客户智能分析将会改变企业使用营销工具的方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27