京公网安备 11010802034615号
经营许可证编号:京B2-20210330
常见的几种“分析”概念
在业务实践中,有很多“分析”概念会让大家感到疑惑,从而直接影响从业者的职业规划,其包括职业定位、发展路线等。因此有必要将几种最常见的“分析”概念进行介绍,为大家今后的职业定位和发展提供帮助。

1.数据统计
数据统计是对最初级的数据从业者的定位,其含义如其字面意思——统计,具体工作是从海量数据中进行数据提取、数据清洗、数据汇总和基本输出工作。数据统计是所有公司必不可少的工作内容,由于该工作不需要具有太高的技术含量,因此其替代性非常强,通常该工作会通过数据产品自动化来实现。
数据统计要求从业者具有良好的数据提取和处理能力,核心需求能力是能熟练掌握SQL的使用技能及Excel的使用技能,这是从业者职业发展的开始。
统计类工作的定位一般是初级分析师或数据分析员。我们常见的统计工作如日报、周报、月报、季报、年报等,直接陈列数据、报表等类型的报告皆属于此类工作的典型内容。
2.数据分析
数据分析是在数据统计基础上的必要延伸,也是数据从业者的必经阶段。数据分析的基本流程通常包括需求收集、需求处理、需求评估、数据准备、数据分析、数据展现,除了基本流程外,通常还会包括业务沟通、业务优化等过程。数据分析的需求常见于大中型公司,小型公司的分析类需求较少,更多的是侧重于统计需求。
数据分析对从业者的要求较数据统计高,需要从业者具备良好的数据处理和分析能力,同时由于数据要符合落地性的需求,要求从业者需要具备基本的业务常识和经验,以保证数据分析的结果有用、可用、易用,进而推动业务人员理解数据、分析业务、优化业务。
分析类工作根据从业者的层次不同,通常会分为中级分析师、高级分析师、首席分析师等,不同公司对分析师的级别定义不同,但作为中高级分析师,其关注点不仅是数据本身,而是更侧重于从数据中挖掘价值、发现业务,进而优化其可优化的节点。常见的分析类工作包括专项类分析、市场类分析、项目类分析等。
3.数据挖掘
数据挖掘严格意义上属于数据分析的一部分,但由于其独特的技术技能要求及应用领域,已经从数据分析中脱离出来形成单独的数据职业。数据挖掘是指从海量的数据中挖掘其隐含的、潜在的数据价值的过程,侧重点是针对未知知识的探索。
数据挖掘要求从业者在人工智能、机器学习等挖掘技术中至少掌握一门数据挖掘技术,并且需要特定程序和语言进行输出,展示层面需要具有一定的可视化技术来解释挖掘结果和价值,因此具有较高的数据从业要求。
数据挖掘从业者的公司定位,根据面向对象的不同可分为以下两种。
业务类数据挖掘工程师:其侧重点是运用数据挖掘算法为业务提供数据分析和挖掘价值点,直接优化业务运作。
技术类数据挖掘工程师:其侧重点是通过数据挖掘算法的优化和改进,为数据产品如DSP、RTB、个性化推荐等提供算法支持,是整个数据产品的重要环节。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01