
都说HR要懂大数据,可我还是迷茫怎么办?
数据除了能证明HR的绩效表现,更重要的是,基于大数据的洞察,能够支持科学的人才管理决策。虽然“大数据”概念的风行让很多人蠢蠢欲动,但多数人并不知道大数据在人才管理领域如何做才能发挥价值。
所以在实操层面,很多中国企业依然感到迷茫而无从下手:
迷茫1:什么样的大数据对企业人力资源管理才有价值?
无法追根溯源的数据,就失去了洞察的价值
一直以来,人力资源部都是按照职能板块进行组织设计的,然而这样做也产生了弊端,很多HR部门内部缺乏有效的协同,难以发挥整合的价值。同时,单个员工的人才数据无法有效整合,分别存在不同的信息孤岛,严重影响了对一个人或团队综合评估和发展的可能性。
所以,我们需要打通这些壁垒,让围绕每一个人才的所有数据都得到整合。如果企业人才的选、用、育、留的数据相互割裂,将导致无法一体化追踪和管理关键人才的尴尬难题。
即便你使用了软件,但如果你运用的软件并非全流程一体化的,就无法从招聘测评一体化到绩效、到继任等全业务流程有效联动,也就意味着招聘的数据无法对接员工成长的数据,也无法对接人才晋升继任的数据,那我们就无法知道人才在企业中的变化和问题症结所在。所以,被割裂的数据,就失去了洞察的价值。
迷茫2:如何判断数据分析的结果是好还是坏?
没有行业数据的参考,决策难有方向
如果企业只拥有自身的数据,就只能对比自己的数据波动,只能回答“我是否比过往做得更好”的问题,而无法解答“我到底在行业中处于什么位置”。没有了后者,就无法制定企业的人才战略方向。所以,要依靠大数据分析来驱动战略决策,就需要同时拥有自身数据、行业数据和标杆数据。
举一个例子简单说明这三种数据是如何帮助企业确定目标并不断优化行为决策的:一家中国IT企业,希望在国内找到一批有行业经验的销售经理。企业通过行业数据了解中国市场上IT销售经理级别的人才从哪里来、到哪里去、普遍的留存期等,同时将企业过往的销售经理从被测评、招聘而进入公司到离开公司这整个过程的相关数据与同行业、同地区、同职位的最佳实践数据对标,找到了可优化的环节(如优化招聘渠道、加速招聘决策周期、优化继任标准等)和可量化的优化目标,进而帮助企业更精准地找到了所需的人才。
迷茫3:如何使用才能发挥大数据的最大价值?
不仅仅是统计和分析,预测才是大数据的最高红利
统计是对现有业务数据的单纯汇总,进而展示公司的业务正在发生什么(What is happening?);分析则是进一步帮我们探索这些事情发生背后的原因(Why it is happening?);而大数据不只是统计,也不仅仅是洞察业务问题所在,其最大的红利在于进行科学的预测(What is going to happen?),以便帮助企业根据预判做出更恰当的应对策略。
关于大数据预测的应用,有很多拥有海量数据的企业已经做了很多出色的尝试,Google就利用人们的搜索记录预测了某地流感爆发的趋势;Amazon利用用户的购买和浏览历史数据进行有针对性的书籍购荐,从而有效提升了销量;Farecast利用过去十年所有的航线机票价格打折数据,来预测用户购买机票的时机是否合适……人力资源管理领域也如此,例如使用人才管理软件的用户就能通过行业数据和自身全流程的人才数据的挖掘,来预测员工离职率等,这些都是“已来的未来”!
大数据和以往的HR咨询产品完全不同,与其说大数据给HR带来的是一种工具上的提升,不如说是一场思维上的变革。在这场变革中,HR既要脱离已有的框架和工具,用更全面的视角看到以往从未关注到的变量,又要从心理学、组织行为学、管理学的层面更深入地把握个体和组织,观察到真正的问题,触及更深刻的本质,提出更科学的假设,更要对技术和数学有深刻的洞察,了解技术和数据可以帮助我们实现什么目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10