
游戏运营的常规数据分析思路分享
数据分析工作可以从宏观数据和微观数据(细分数据)说起,这种方式也是我比较喜欢的,宏观数据是对总体趋势的预测,以及对异常数据的敏感性把握。而微观数据分析的来源一方面就是从宏观数据的异动而产生的需求,二者是一种相互依托的关系。
当然如果不是专业做DA工作,也许按照这种方式是没有什么问题的,因为毕竟工作时间和精力不允许有更多的研究工作。从我这个菜鸟DA来说,其实还有很多的工作要做,而采取的形式是另外一种形式,不过其内涵与之前的是一致的。
如下图,大概每个行业的数据分析体系都是这个模式:
网游的常规数据的把握和检测更多的是针对人气(总登,峰值,APA,注册,流失,在线时长),消费(ARPU,充值,消耗,渗透率)。
专题数据挖掘目前在网游数据分析领域应用比较小,即使有这方面的研究也属于公司的核心技术,这一部分的研究是对整个游戏玩家的游戏行为,购买行为,情感行为,游戏心理,游戏压力,游戏寿命,游戏体验,游戏交互,IB购买关联喜好,经济系统运营分析等等深入的专题研究,不是为了解决某个问题而解决,而是一项基于海量数据的定期专题式的研究分析,只有深刻了解了用户的需求才能做出和运营好符合玩家口味的产品。
用户调研其实在网游数据分析工作处在一个边缘的位置,很多玩家不清楚自己想要什么,所以某种程度上我们来做这种调研工作往往会得到错误的玩家信号,所以很少会用调研手段来分析玩家。
按照这个方式总结起来如下图:
这里的深度寻因是一种长期和固定的针对用户各种特征的寻因。
那么对于我们而言,要做有两块工作,常规数据分析,专题式的数据挖掘研究。常规数据分析除了在宏观把握数据的趋势和异动之外,还要在微观上,将异动的数据指标进行细分,从微观角度找出问题的所在解决问题。而专题的数据分析是我们主动的提出一些问题,进而去寻找数据并进行研究,并不是为了解决问题而解决。这看似不能最直接的解决问题,然而这些数据的解读,我们能够掌握
玩家想要什么(what);
为什么要(why);
从哪里可以得到(where);
什么时候我们做(when);
哪些玩家针对哪些运营策略(who);
我们应该给多少(how much);
以什么形式进行(how);
通过5W2H的方法,结合分析手段来解决这些问题。以下为根据网络总结的数据分析的一些注意点和方法。
常规数据分析的思路–从收益角度
但我们面临收益下降时,需要我们定位问题,从收益角度出发来解决问题。
常规数据分析的思路–从人气的角度
通过以上的数据解读和针对这些宏观数据的细分,我们可以完成一些异动数据的分析和紧急的需求。
而在做好这项工作的同时,我们也需要做好专题式的数据分析工作,提供运营人员更多的运营决策。
在专题的数据挖掘与分析模式,有以下的几种形式:
*用户生命周期模型
*流失因素函数及模型计算
*网络媒体效果分析
*游戏活动及系统风险评估
*游戏经济系统预警评估
针对专题式的数据挖掘,目前还在一个缓慢的研究过程,这一块确实是比较困难,不同于传统零售,金融,电信行业。网游具有着独特性在具体的分析过程中,需要结合特点,合理应用理论和技术解决问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07