京公网安备 11010802034615号
经营许可证编号:京B2-20210330
新技术的不断出现,让我们不得不面临新的转变。互联网使得数据的流动和共享成为了可能,云计算技术的开发更是能够全面进行数据分析。我们对数据对的处理不再仅仅是从海量的目标群中选择样本,进行因果分析。相对的,通过技术手段,我们可以对所有相关数据进行整理,深入挖掘数据之间的各种潜在关系,并获得我们想要的精准的关联结论。这就是大数据时代,数据成为了最有价值的存在,同时推动或倒逼各行各业的数字化转型。
移动互联网的快速普及与发展更是推动了这一形势的加剧。当众多的消费者从线下转移到线上之后,众多传统企业才开始意识到“触网”接受技术变革的重要性。“信息量已经进行了转移,消费者线上+线下的跳跃性消费行为需要被评估。”云像数字CEO安士辉如此评价到。
云像数字CEO安士辉
传统企业需要进行数字化转型以便更好的适应时代发展。当互联网公司已经抢先获得大数据优势的时候,传统企业如何能够从从众多的数据挖掘中精准分析消费者行为,并找回线上消费者,成为了其面临的重要难题。
“传统企业对消费者和品牌的定位需要从感性理解转向数字理解。”安世辉表示,这也是云像数字成立之初,希望能够为传统企业带来的全新改变。
2013年,在美国数字服务行业已经发展的如火如荼之时,云像数字公司成立。作为基于CRM的数字一体化服务公司,其发力做创新业务,包括CRM和BI产品搭建与实施、数据分析服务、数字营销和全渠道服务。
对于传统企业来说,单独的电商服务已经无法满足时代变革的诉求。在不同的商业环境下,企业需要更加完整的数据链条与完善的数字化平台。数据的收集不再仅仅局限于门店、社交数据等单独层面,而是要形成完整的O2O闭环,将产业链数据进行打通,更加完善的分析消费者行为,从而进行精准营销。
因此云像数字提出了打造“完整数据资产”的理念,将Digital Marketing与Ecommerce完整打通,整合多种数据源帮助企业构建强大消费者资产。以Omni consumer为基础,明确其完整消费者画像(Face),基于CRM为客户提供数字营销和数字渠道的服务。云像数字的CRM产品属开放平台式产品,主要有以下几大功能模块:数据管理模块、数据报表模块、消费者忠诚度管理模块、工具模块等。“我们希望能够形成品效合一,为企业进行全渠道的O2O服务。”安世辉如此解释到。
但与美国相比,中国市场在数字服务领域仍显稚嫩。虽然存在起步晚等一些客观因素,但在传统企业思维转变与产业链数据开源方面仍面临着许多问题。“传统企业的数据源是割裂的,线上线下很难进行统一,同时全产业链的各个环节,包括经销商的数据还很难进行采集与分析。”安世辉在谈到中国传统企业进行数字化转型所面临的的困难时如此说道。
而目前,云像数字将电商、门店和经销商系统、社会化媒体、移动端等进行完整的数据接触点布局,再通过这些布局实现对消费者的完整描述,进而对消费者加以区分,并根据不同的价值来进行定制化营销和体验管理。以此为基础,结合包括分销系统和产品系统在内的整个供应链系统,将整个系统完整打通,实现消费体验管理,由此促使消费者成为自己的忠实粉丝,进而提升营销业绩,更有效地践行完整数据资产理念。
“我们将企业资金用户产品开发、人才引进和市场运作,希望能够成为以数据为基础的数字服务公司,推进数据产品的商业化应用,帮助传统企业实现数字化转型。”安世辉如此表述云像数字的未来发展规划。
实际上,云像数字的母公司瑞金麟刚刚完成B轮近亿元的融资。安士辉在此前的2014互联网大会上接受记者采访时表示:“本轮融资将开启公司业务创新的大幕为品牌客户提供一体化数字服务,资金主要将投入在数据产品运维、数字业务发展、管理体系化建设、人才引进与品牌发展上,相信会为公司注入强心剂,更好适应数字时代的数据、渠道、品牌等互联网化的需求。” 他认为,目前中国数字服务市场还处于半蓝海状态,竞争并不激烈,对于中国的数字服务企业来说是一个良好的机遇。
融资的成功也表明了云像数字这类数字服务型企业的兴起,将能更好的帮助传统企业进行数字化转型。但传统企业在大环境下面临的各类转型问题并没有办法单靠数字服务公司进行完整解决。传统企业在大数据时代下谋求数字化转型时,除了依靠数字服务公司的帮助,还应加快自身意识的转变,更快的接受新技术所带来的时代变革,并注重人才培养,推动行业整体发展环境的完善。数字服务公司可以帮助企业进行数据的管理与分析,但数据的广度与深度还需依靠企业的自身发展进行完善。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03