
大数据时代:要么去改变 要么被改变
过去15年中,我们不停地问这些问题:客户是谁,他们需要什么产品,需要什么样的价格?但是现在事情相反了,我们不仅要知道是什么,更重要的是要知道为什么。我们要关心客户为什么买,为什么在那个时间买。我们对客户的了解越多,对客户的需求把握也会更加精准。
大数据分析最重要的一点就是,当我们有不同的原始数据的时候,首先要保持及时性;其次是预测,下一步怎么做,我们要做有预测性的分析。最后一点也很重要,当有分析结果出来的时候,企业要行动,这个行动要在第一时间内告诉消费者“我懂你”。
一个案例就是亚马逊,他们会做一个预测性分析,把货物通过最短距离运送到客户家里。当你根本还没有做出采购选择时,他就预测到了你未来可能会做哪些采购。亚马逊对客户的掌握非常好,不仅能预测到你要购买这个东西,而且知道如果运输过去后,你一定会很开心。这个过程中,需要强大的数据支撑,用于了解客户心理、客户想法,当你把货运到他们家时,他会觉得你懂他。
亲密感虽然是客户所希望的,他们希望你能“懂我”,但如果他们觉得你过多地进入了自己的生活,“你太懂我了,我会有恐慌感。”这就是与“亲密感”所对应的“不舒适感”。
所以我们要做的事情是:我们懂消费者,但是不能让消费者感到害怕。一家聪明的公司,他们知道消费者知道什么,但是还是和他保持相对的距离,让他感觉亲密,不会让他感觉到不适。当你跨过了这条分界线,让他感觉不舒适,他会离开,觉得你不是一个很好的平台。
打通数据的桥梁
就能颠覆行业
现在所有人都在讨论一家叫Uber的公司。以前出租车公司想的是,能够把乘客送到想要去的目的地即可,但这么做还远远不够。消费者更关注是否能够最快速度地搭上车。Uber这么做了,所以成为了世界最大的出租车公司,但事实上没有一辆车是属于他们的。他们可以做到一年410亿美金的营收,而传统出租车公司现在的生存环境就有危机了。这样的商业模式冲击,我们在不同领域都可以看到。
大面积颠覆会发生在以下情况:第一,现有数据和新数据相互匹配提供新的见解;第二,数据分析涉及到移动数据、社交数据、云数据、游戏数据,并深刻理解客户,理解供应商。也就是说,假如你把数据的桥梁打通了,就能把行业给颠覆了。
我们看看这些应用案例:
一、脸识别系统。从进门那一刻,人脸就被快速抓拍,通过人脸识别技术可以很明确地知道:这个人是谁,他将要去哪里。
二、上海街道上的一个监控系统。当行人走过来的时候,摄像机会抓取人脸,识别这个人是否在警方搜索通缉范围内。假设走过来的是嫌疑犯,他在通缉的名单里,系统会快速地把他定位。
三、伦敦地铁的一个系统。每个人走过时,系统会记载他走路的步频是多少,身体状态好不好。这个案例已经落地了5年。
现在有非常智能的牙刷,每天记录你在什么时候刷牙、刷牙是否到位。如果不到位,它会把信息直接传给你的牙医,所以物联网很多应用产生的数据都会影响到你的消费需求。
对很多大公司来说,他们认为自己某种程度上受到政府和法律法规的保护,觉得自己不可战胜。他们说的最多的一句话就是“不,我不想改变”。但是对小的公司来说,任何一个机遇或者创新点对他们来说都是:“是的,我可以改变”,所以机会也许在他们身上。
这个世界是一定要被改变的。你要问自己的是,是改变这个世界,还是让这世界的一部分人来改变你。德国一家非常大的ERP公司预测说,未来很多曾经位列世界500强的企业会消失,全球有40%像泰坦尼克号一样的顶级企业会掉下来。新兴的企业会出来,这个趋势不会停止,大公司会以越来越快的速度消亡,新公司会以越来越快的速度前进
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07