
电信级数据流量与监控系统部署案例分享
编者按:挖掘用户的行为习惯和喜好,在凌乱纷繁的数据背后找到更符合用户兴趣和习惯的产品和服务,并对产品和服务进行针对性地调整和优化,这就是大数据的价值。今天分享的内容就是永洪大数据一个大数据分析平台的搭建部署案例。
以下为原文:
夜深了,电话铃声响起!这不是恐怖片的开头,却是我们工作的开始。
2013年5月,我们收到一个电话线索,客户需要支持几十亿数据量的实时查询与分析,包括数据抓取和存储,我们经过一番努力提出一个解决方案,客户觉得有些不妥,决定自己招聘Hadoop团队,实施该系统……
半个月后,客户打来第二个电话,明确表示Hadoop未能满足实时大数据分析的需求,决定接受我们的方案,但是客户要求我们不仅出产品,还要负责实施……
于是乎,开工!
项目价值
CMNET网间流量分析与监控系统(简称流控系统),是中国移动分公司的一个项目。项目要求能基于时间、地区、运营商、业务、App、IP分组、域名等维度对全省的上网流量进行实时分析和报告。这些分析报告能给客户带来如下好处:
1. 实现对接入链路和基站的全程监控。例如,一旦来自某链路或基站的流量很低,可及时对链路和基站进行检修,这将大大降低故障率。
2. 由于具备了对链路和基站进行全程监控的能力,客户可以对链路和基站的带宽进行动态调整,基于需求进行合理的资源配置。
3. 覆盖全省的全量数据,能提供基于业务/地域/App/行业/域名等维度的数据分析报告,具备100%的可信度和极高的商业价值。
数据流向
上网数据从硬件设备中抓取出来,形成压缩的日志文件存储在服务器上,服务器每五分钟生成新的日志文件。该服务器提供FTP访问。
我们方案中承担的流控系统,将通过FTP每五分钟访问一次日志文件服务器,将新生成的压缩日志文件抽取出来。这是一个典型的、增量更新的ETL过程,如下:
1. Extract: 定期抽取的日志文件并解压缩。
2. Transform: 解析出上网信息,同MySQL的维度表进行关联,生成包括业务/地域/App/行业/域名等维度的宽表。
3. Load: 将数据装载入我们的分布式集市。
初期验证(POC)
中国移动的日志数据分G类和A类,各取几块样本日志文件,验证数据流向的可行性以及性能。
我们很快完成了ETL的整个过程,宽表数据被成功地装载入我们的分布式集市。
性能上,我们按照用户提出的每天数据量5000万条增量,计算出支持100天50亿数据量的分布式集群所需的磁盘空间、内存总量、和CPU总量。由于客户一再强调预算有限,于是配置了6台低配PC server:1cpu x 4core,32G内存,1T硬盘。
我们模拟了常用的用户场景,整个系统的响应能力基本满足需求。系统架构如下:
系统架构图
正式实施
中国移动分公司的上网数据在内网,一般不提供外网连接,需要严格申请之后才能在一定时间内提供外网连接。因而,我们先把整个系统的ETL工作开发完成之后,才正式申请了外网连接进行数据装载。
从开始进行上网数据的ETL工作,我们就发现数据量与预期严重不符。预期的上网数据是每天不超过5000万条,但实际上每天的上网数据在6亿条以上,100天保存的数据量将会达到惊人的六百亿条。6台低配PC server有点小马拉大车的感觉,完全达不到“海量数据、实时分析”的设计目标。我们赶紧联系客户,确定上网数据每天6亿条以上,而不是之前预估的每天5000万条左右。怎么办?
系统重构
经过与客户的详细沟通和理性分析,大家一致决定进行系统重构。
上网数据的日志文件是5分钟粒度的。我们将上网数据按照分析需求分为两类:
1. 细节数据:保留三天的细节数据(5分钟粒度),共约20亿条。这样,由于保留了细节数据,客户可以对近三天的上网数据进行任意的探索式BI分析。
2. 汇总数据:在认真研究了流控系统的分析报告需求之后,我们将五分钟的细节数据汇总为两小时的汇总数据。这样数据量可以降到约为原来的1/10,100天的数据总量大约60亿条。
重构之后的数据流如下:
数据流图
后期,我们陆续进行了一些系统调优,包括JVM调优、存储调优、计算调优等等。客户打开一个Dashboard的响应时间基本控制在秒级,最极端的分析报告也能在一分钟之内生成。基本实现了“海量数据、实时分析”:
1. 系统定期推送日报、周报和月报。
2. 系统支持探索式BI分析。多数分析请求达到了秒级响应。
案例总结
1. 项目的数据量非常大,100天超过600亿条日志;
2. 项目的预算非常有限,采购了6台低端PC Server。硬件投入不大,软件性价比也很高;
3. ETL过程难度较高,随着降维的需求加入,BI层难度也相应提高;
4. 为达到秒级响应,以支持探索式BI的交互式分析,对系统进行了多个层面的优化。
结束语
有了大数据,还要从大数据中提取价值,离不开分析工具,通过丰富的分析功能,在繁杂的数据中找到其中的价值。而大数据给分析提供了一定的挑战,需要高性能计算做支撑,才能在大数据的金矿中挖到金子。
这些案例的成功实施和上线,完美诠释了我们的大数据之道:大数据,小投入。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16