
R语言 apply函数家族详解
apply {base}
通过对数组或者矩阵的一个维度使用函数生成值得列表或者数组、向量。
apply(X, MARGIN, FUN, …)
X 阵列,包括矩阵
MARGIN 1表示矩阵行,2表示矩阵列,也可以是c(1,2)
例:
>xxx<-matrix(1:20,ncol=4)
>apply(xxx,1,mean)
[1] 8.5 9.5 10.5 11.5 12.5
>apply(xxx,2,mean)
[1] 3 8 13 18
>xxx
[,1] [,2] [,3] [,4]
[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
[5,] 5 10 15 20
lapply {base}
通过对x的每一个元素运用函数,生成一个与元素个数相同的值列表
lapply(X, FUN, …)
X表示一个向量或者表达式对象,其余对象将被通过as.list强制转换为list
例:
> x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
> x
$a
[1] 1 2 3 4 5 6 7 8 9 10
$beta
[1] 0.04978707 0.13533528 0.36787944 1.00000000 2.71828183 7.38905610
[7] 20.08553692
$logic
[1] TRUE FALSE FALSE TRUE
> lapply(x,mean)
$a
[1] 5.5
$beta
[1] 4.535125
$logic
[1] 0.5
sapply {base}
这是一个用户友好版本,是lapply函数的包装版。该函数返回值为向量、矩阵,如果simplify=”array”,且合适的情况下,将会通过simplify2array()函数转换为阵列。sapply(x, f, simplify=FALSE, USE.NAMES=FALSE)返回的值与lapply(x,f)是一致的。
sapply(X, FUN, …, simplify = TRUE, USE.NAMES = TRUE)
X表示一个向量或者表达式对象,其余对象将被通过as.list强制转换为list
simplify 逻辑值或者字符串,如果可以,结果应该被简化为向量、矩阵或者高维数组。必须是命名的,不能是简写。默认值是TRUE,若合适将会返回一个向量或者矩阵。如果simplify=”array”,结果将返回一个阵列。
USE.NAMES 逻辑值,如果为TRUE,且x没有被命名,则对x进行命名。
例:
> sapply(k, paste,USE.NAMES=FALSE,1:5,sep=”…”)
[,1] [,2] [,3]
[1,] “a…1” “b…1” “c…1”
[2,] “a…2” “b…2” “c…2”
[3,] “a…3” “b…3” “c…3”
[4,] “a…4” “b…4” “c…4”
[5,] “a…5” “b…5” “c…5”
> sapply(k, paste,USE.NAMES=TRUE,1:5,sep=”…”)
a b c
[1,] “a…1” “b…1” “c…1”
[2,] “a…2” “b…2” “c…2”
[3,] “a…3” “b…3” “c…3”
[4,] “a…4” “b…4” “c…4”
[5,] “a…5” “b…5” “c…5”
> sapply(k, paste,USE.NAMES=TRUE,1:5,sep=”…”,simplyfy=TRUE)
a b c
[1,] “a…1…TRUE” “b…1…TRUE” “c…1…TRUE”
[2,] “a…2…TRUE” “b…2…TRUE” “c…2…TRUE”
[3,] “a…3…TRUE” “b…3…TRUE” “c…3…TRUE”
[4,] “a…4…TRUE” “b…4…TRUE” “c…4…TRUE”
[5,] “a…5…TRUE” “b…5…TRUE” “c…5…TRUE”
> sapply(k, paste,simplify=TRUE,USE.NAMES=TRUE,1:5,sep=”…”)
a b c
[1,] “a…1” “b…1” “c…1”
[2,] “a…2” “b…2” “c…2”
[3,] “a…3” “b…3” “c…3”
[4,] “a…4” “b…4” “c…4”
[5,] “a…5” “b…5” “c…5”
> sapply(k, paste,simplify=FALSE,USE.NAMES=TRUE,1:5,sep=”…”)
$a
[1] “a…1” “a…2” “a…3” “a…4” “a…5”
$b
[1] “b…1” “b…2” “b…3” “b…4” “b…5”
$c
[1] “c…1” “c…2” “c…3” “c…4” “c…5”
vapply {base}
vapply类似于sapply函数,但是它的返回值有预定义类型,所以它使用起来会更加安全,有的时候会更快
在vapply函数中总是会进行简化,vapply会检测FUN的所有值是否与FUN.VALUE兼容,以使他们具有相同的长度和类型。类型顺序:逻辑<</span>整型<</span>实数<</span>复数
vapply(X, FUN, FUN.VALUE, …, USE.NAMES = TRUE)
X表示一个向量或者表达式对象,其余对象将被通过as.list强制转换为list
simplify 逻辑值或者字符串,如果可以,结果应该被简化为向量、矩阵或者高维数组。必须是命名的,不能是简写。默认值是TRUE,若合适将会返回一个向量或者矩阵。如果simplify=”array”,结果将返回一个阵列。
USE.NAMES 逻辑值,如果为TRUE,且x没有被命名,则对x进行命名。
FUN.VALUE 一个通用型向量,FUN函数返回值得模板
例:
> x<-data.frame(a=rnorm(4,4,4),b=rnorm(4,5,3),c=rnorm(4,5,3))
> vapply(x,mean,c(c=0))
a b c
1.8329043 6.0442858 -0.1437202
> k<-function(x)
+ {
+ list(mean(x),sd(x))
+ }
> vapply(x,k,c(c=0))
错误于vapply(x, k, c(c = 0)) : 值的长度必需为1,
但FUN(X[[1]])结果的长度却是2
> vapply(x,k,c(c=0,b=0))
错误于vapply(x, k, c(c = 0, b = 0)) : 值的种类必需是‘double’,
但FUN(X[[1]])结果的种类却是‘list’
> vapply(x,k,c(list(c=0,b=0)))
a b c
c 1.832904 6.044286 -0.1437202
b 1.257834 1.940433 3.649194
tapply {base}
对不规则阵列使用向量,即对一组非空值按照一组确定因子进行相应计算
tapply(X, INDEX, FUN, …, simplify = TRUE)
x 一个原子向量,典型的是一个向量
INDEX 因子列表,和x长度一样,元素将被通过as.factor强制转换为因子
simplify 若为FALSE,tapply将以列表形式返回阵列。若为TRUE,FUN则直接返回数值
例:
> height <- c(174, 165, 180, 171, 160)
> sex<-c(“F”,”F”,”M”,”F”,”M”)
> tapply(height, sex, mean)
F M
170 170
eapply {base}
eapply函数通过对environment中命名值进行FUN计算后返回一个列表值,用户可以请求所有使用过的命名对象。
eapply(env, FUN, …, all.names = FALSE, USE.NAMES = TRUE)
env 将被使用的环境
all.names 逻辑值,指示是否对所有值使用该函数
USE.NAMES 逻辑值,指示返回的列表结果是否包含命名
例:
> require(stats)
>
> env <- new.env(hash = FALSE) # so the order is fixed
> env$a <- 1:10
> env$beta <- exp(-3:3)
> env$logic <- c(TRUE, FALSE, FALSE, TRUE)
> # what have we there?
> utils::ls.str(env)
a : int [1:10] 1 2 3 4 5 6 7 8 9 10
beta : num [1:7] 0.0498 0.1353 0.3679 1 2.7183 …
logic : logi [1:4] TRUE FALSE FALSE TRUE
>
> # compute the mean for each list element
> eapply(env, mean)
$logic
[1] 0.5
$beta
[1] 4.535125
$a
[1] 5.5
> unlist(eapply(env, mean, USE.NAMES = FALSE))
[1] 0.500000 4.535125 5.500000
>
> # median and quartiles for each element (making use of “…” passing):
> eapply(env, quantile, probs = 1:3/4)
$logic
25% 50% 75%
0.0 0.5 1.0
$beta
25% 50% 75%
0.2516074 1.0000000 5.0536690
$a
25% 50% 75%
3.25 5.50 7.75
> eapply(env, quantile)
$logic
0% 25% 50% 75% 100%
0.0 0.0 0.5 1.0 1.0
$beta
0% 25% 50% 75% 100%
0.04978707 0.25160736 1.00000000 5.05366896 20.08553692
$a
0% 25% 50% 75% 100%
1.00 3.25 5.50 7.75 10.00
mapply {base}
mapply是sapply的多变量版本。将对…中的每个参数运行FUN函数,如有必要,参数将被循环。
mapply(FUN, …, MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)
MoreArgs FUN函数的其他参数列表
SIMPLIFY 逻辑或者字符串,可以减少结果成为一个向量、矩阵或者更高维阵列,详见sapply的simplify参数
USE.NAMES 逻辑值,如果第一个参数…已被命名,将使用这个字符向量作为名字
例:
> mapply(rep, 1:4, 4:1)
[[1]]
[1] 1 1 1 1
[[2]]
[1] 2 2 2
[[3]]
[1] 3 3
[[4]]
[1] 4
rapply {base}
rapply是lapply的递归版本
rapply(X, FUN, classes = “ANY”, deflt = NULL, how = c(“unlist”, “replace”, “list”), …)
X 一个列表
classes 关于类名的字符向量,或者为any时则匹配任何类
deflt 默认结果,如果使用了how=”replace”,则不能使用
how 字符串匹配三种可能结果
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07