
面对大数据,必须拿出鲜明的态度。我们不能做一个事不关己的旁观者,至今没有关于大数据的相关规划甚至明确定义。当“大数据时代已经来临”的论调日渐喧嚣时,我们不能只进行概念炒作,使这一仍然朦胧的产业“未富先老”。
对于大数据的描述,没有比阿尔文·托夫勒更浪漫的了:大数据是“第三次浪潮”的华彩乐章。作为一名颇有成就的未来学家,早在上世纪80年代他就作出了这样的预言。然而,大数据真正凸显自身价值,却是在互联网大行其道以后,再准确一点说,也就是这两年,大数据才在全球范围内“火”了起来。
与智能手机、3D打印这些可以亲身体验的划时代产品相比,大数据显得虚无缥缈、难以捉摸,但从未来前景预测,大数据给这个世界带来的改变,或许会更大、更难以想象。
大数据的横空出世,有赖于短短几年出现的海量数据。据统计,互联网上的数据每两年翻一番,而目前世界上90%以上的数据都是最近几年才产生的。当然,这些海量数据仅仅是“大数据”概念的一部分,只有具备4个“V”,也就是Volume(海量)、Velocity(高速)、Variety(多样)、Value(价值),关于大数据的定义才算眉清目楚,而最后一个“V”大数据在具体应用中实现怎样的价值,恰恰是决定其未来走向的关键。
在大数据发端的美国,一些大型企业已经在利用数据赚取利润。沃尔玛存储着数千家连锁店在65周内每一笔销售的详细记录,通过分析购买行为了解客户;eBay通过购买网页搜索的关键字,精确计算出每一个关键字为eBay带来的投资回报,五年内广告费用降低99%。在国内,一些互联网企业也在主动拥抱大数据,凡客诚品将自己定位为一家“数据公司”,专门成立了数据中心;百合网分析注册用户的年龄、地域、学历等数据,形成独有的商业模型。
那么,此情此景是否真的表明,大数据时代已经到来?这恐怕是一个过于乐观的判断。
目前涉及大数据的企业,多是在数据利用上单打独斗,而大数据时代到来的重要标志,应该是大批专业级“数据买卖商”的出现,以及围绕数据买卖形成的,贯穿于收集、整理、分析、应用整个流程的产业链条。
至少从目前来看,要从大数据这个藏量巨大的金矿中淘到金子,并没那么容易。但一个令人振奋的事实是,经过一些先行者的不懈探索,大数据这一“华彩乐章”正发出日益恢宏的回响。
IBM、甲骨文、SAP近年纷纷斥巨资收购数据管理和分析公司,这些互联网巨头这么做的原因只有一个:唯有将海量数据进行有效处理和分析,才能向客户提供有价值的东西。在它们带动下,数据分析技术将日渐成熟,从而围绕大数据逐步形成一个极其庞大的新市场。
巧妇难为无米之炊,掘金大数据的首要一点,还是谁拥有更多、更有价值的数据。社交网络、移动互联网、信息化企业都是海量数据的制造者,脸谱公司手中掌握着8.5亿用户,淘宝注册用户超过3.7亿,腾讯的微信用户突破3亿,这些庞大用户群所提供的数据,正在等待时机释放出巨大商业能量。
由此可见,在必然到来的大数据时代,有两种企业将在“大数据产业链”中处于重要地位,一是掌握海量有效数据的企业,一是有着强大数据分析能力的企业。
我们完全可以预测,在不久的将来,脸谱、腾讯等海量数据持有者要么自我延伸成为数据分析提供商,要么与IBM等企业密切对接成为上下游合作企业,大数据产业链将在某个爆发时点到来之际,以令人惊讶的速度成长壮大。
实际上,大数据不只互联网企业在唱独角戏,制造、销售等各领域企业都将受到大数据深远影响,先知先觉者已主动融入其中,例如海尔就利用阿里巴巴的数据分析用户喜好,实现电器个性化定制。我们毫不怀疑,大数据将对现有商业思维进行新一轮颠覆,未来企业最为核心的竞争力,或许不是人才,不是商业模式,而是对大数据的掌控分析能力。
面对大数据,必须拿出鲜明的态度。当美国奥巴马政府已将其上升到国家战略时,我们不能做一个事不关己的旁观者,至今没有关于大数据的相关规划甚至明确定义。当“大数据时代已经来临”的论调日渐喧嚣时,我们不能故伎重演,大肆进行概念炒作,使这一仍然朦胧的产业“未富先老”。
我们唯一要做的,是深刻认识大数据,并在战略层面、科学角度切实行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07