
数据分析的关键是制定聪明的决策
有一句经典语录:“我的广告费有一半浪费掉了,但我不知道是哪一半。”,来自于John Wanamaker,1900年代早期的一位美国百货商店商人。数据分析可以找出到底哪一半投资是浪费掉的,让您可以最大化顶线(即增加营收)或最小化底线(即降低成本),从而优化您的投入产出比。数据分析可以帮助制定聪明的决策——它是把数据转化为信息的过程,分析信息以得到见解,并制定可以影响商业绩效的策略和行动计划。
过去,我们常抱怨没有足够的数据——搜集数据和信息用作分析是非常困难的,需要大量的时间和金钱等成本;现在,跟踪和搜集信息已经变得非常容易了,而且所需成本也大大减少。然而,我们仍然在像一个世纪前一样努力解决哪一半广告费被浪费掉的问题——因为可用作分析的数据和信息实在是太多了。
我们需要换个角度来思考数据分析。首先,数据不再是一个障碍;其次,我们应该关注整个流程和商业成果。不过,谈到数据分析时,目前仍然有很多误解。简单地聘用数据分析负责人或购买顶级的数据分析软件,并不代表您的公司已经拥有数据分析的能力。因此,首先理解数据分析的基本知识,是非常重要的。
基本知识
数据分析并不是IT,也不是报告。对这一点的误解,是我见到过的最常见的误解之一。
当谈到数据分析时,很多人仍然相信这应该是IT的事情,因为它与技术有关。数据分析的第一步是把数据转化为信息,在这里,技术只是工具,报告只是产出。我们需要技术来进行数据分析,但这并不意味着数据分析就应该由IT的人来驱动。与此类似,财务管理也需要软件来生成财务报告,但是它并没有被划归到IT,因为它涉及到财务审核和规划。此外,很多人仍然不清楚数据分析和报告的概念之间的区别。在我看来,如果报告中没有任何信息被翻译为可以影响商业产出的见解,那么这就不是数据分析,仅仅是报告而已。
第二个误解是关于见解(insight)的。
见解是很重要的,很多公司抱怨说报告没有见解。首先,我认为不应该期望从报告中得到见解,因为报告仅仅是提供一些数字来告诉您发生了什么;同时,您仍然需要找出为什么以及需要做什么。
找出见解是一个探索和学习的过程。它必须由彻底理解业务的人来发起,问正确的问题,分析相关信息之间的联系,找出能引向可能行动的见解。找出见解的过程不能外包给对您的业务并不太懂的第三方。
数据分析也是一个人和数据之间交互和协作的过程;因此,技术在这里对改善业务工作效率而言扮演者重要的角色。报告仅仅提供静态的信息,但我们需要快速而动态地获取来自多个数据源的相关数据来回答突发的商业问题并找出见解。没有技术,从无数静态报告中获取见解将会占用大量时间,非常困难。
最后一个我想要说明的要点是关于制定聪明决策的过程。
我知道很多公司都把处理数据分析的职责交给内部人员或外包给第三方的服务提供商。然而,这些内部人员或服务提供商并没有权威、影响力或权力去参与战略和决策制定。
结果,数据分析带来的增值并不能转化为能够带来想要的商业成果的行动。
在数据分析、战略制定和决策制定的流程之间,需要有很好的整合和协作。竖井式组织架构和孤立的决策制定流程往往是实现数据分析的价值的重大障碍。
结论
很显然,这些年来信息技术的迅速发展,影响了我们商业流程、战略制定和数据分析的方式。随着社交媒体 / Web 2.0成为主流,以及开放数据运动,网络上可用数据的数量正在呈指数级增长,也为数据分析带来了很多新的挑战。
无论这些挑战如何,我们都应该始终关注数据分析的基本概念。正如我们总是在任何业务中考虑人员、流程和技术,数据分析中也应如此。我们应该理解技术只是工具——它让人们能够获取正确的数据和信息以找到相关的见解,而这些见解会在决策制定流程中被翻译为战略。
因此,数据分析的关键是制定聪明的决策,并记住基本原则是不变的——万变不离其宗。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07