京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据可以帮助品牌发现机遇,如新客户、新市场、新规律、回避风险、潜在威胁等,同时亦可以有助于品牌营销决策的调整与优化。数据是产品量化指标,数据分析是产品运营极具战略意义的一环;从宏观到微观分析,通过表层数据挖掘产品问题。
对此我的看法:
数据衡量 -知错就改,为决策撑腰,避免头脑风暴,主观臆断,用户体验调优
数据验证-验证产品需求强弱,功能比重,品牌价值
数据预测-总结历史规律,预测产品未来走向
知乎用户@绡页的答案很经典:
“知错能改,善莫大焉”——可是错在哪里,数据分析告诉你。
“运筹帷幄之中,决胜千里之外”——怎么做好“运筹”,数据分析告诉你。
“以往鉴来,未卜先知”——怎么发现历史的规律以预测未来,数据分析告诉你。
结合刚刚出炉的牛小招app(宣讲会信息整合类产品)。三步走:
初级的数据埋点:在产品流程关键部位植相关统计代码,用来追踪每次用户的行为,统计关键流程的使用程度。
中级的数据埋点:在产品中植入多段代码追踪用户连续行为,建立用户模型来具体化用户在使用产品中的操作行为。
高级的数据埋点:与研发团队合作,通过数据埋点还原出用户画像及用户行为。
1.入口分析
(1)数据来源:集成SDK获取数据
(2)市场埋点:各大市场的下载量以及新增用户的地域分布情况,相应的市场战略的调整。
2.用户质量分析(用户画像)
(1)用户: 地区、学校,专业,年龄,就职情况
(2)留存用户:次日留存,三日留存,七日留存等
(3)流失用户:流失率以及原因
(4)新增用户数
(5)细分用户,精准推送
3 .用户行为指标
3.1 自定义事件分析, 功能的使用情况
初始界面三个流向:去看看,注册,登陆。
登陆流程:登陆,忘记密码,第三方登陆情况
首页:内容的阅读量,banner 的点击情况,宣讲会日历时间跨度,个人中心以及筛选的流向如何。
详情界面:二级界面的停留时间,收藏,分享,地图点击率以及内容转化情况。
闹钟界面设定和使用情况
......
通过功能点的使用情况和比重确定优先级,进行产品减法。
3.2漏斗模型,打造合理访问路径
关键路径上面各个页面的浏览量
页面转化&用户进入后一步步的转化情况
通过漏斗模型计算出关键路径上每一步的转化率,初步判断该流程转化率的情况,及每一步的流失率情况。用来确定整个流程的设计是否合理,各步骤的优劣,是否存在优化的空间等。试着去了解用户使用app的真正目的,为他们提供合理的访问路径或操作流程,而不是一味地去提高转化率。
4 .错误分析
用户使用操作过程中出现的系统bug:闪退,停止运行,卡死等错误分析。对于刚上线的产品,及时发现用户使用过程中的bug后及时修复,这点很重要。
5.内容出口分析
第三方分享出口,分析内容的出口渠道。
还有一些其他数据,设备终端,网络以及运营商。
产品经理日常数据表
最后,每一款产品都有适合他的核心指标和产品分析维度,一定要找到她。
常见的数据分析工具:友盟,Talkingdata,诸葛IO等等 针对自己的产品的需要进行选择。我结合了友盟和诸葛io。
友盟九大常规化的指标在统计分析上已经够用,包括概况,用户分析,留存分析,渠道分析,功能分析以及社会化分享。
诸葛io则是从用户的行为跟踪分析,粒度更细,用起来也比较顺手。主打精益化移动产品分析。
数据驱动运营,任重而道远,养成总结知识,总结经验的好习惯,逐步形成自己的体系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27