京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据关联营销
大数据营销,无疑是当前商业领域最热门的话题之一。 然而,大数据分析的基础是什么?当然是数据。随之而来的问题是:数据从哪里来?营销者自然而然会想到IT企业。诚然,进入Web2.0时代,网络就不仅仅是企业的舞台,每个人都可以通过一根网线在网络上留下自己的痕迹。因此,互联网企业拥有海量的数据,拥有大数据分析的天然基础。此外,使用芯片的各类设备制造企业也有大数据,它们通过植入机器中的小小芯片,记录用户的各种操作行为,为用户行为分析积累了大量的数据。以及大型连锁超市、金融服务中心等,它们掌握了具体的消费信息,同样积累了大量的数据。所以,在各类介绍大数据营销的书籍中,其援引的案例大多出于以上行业。那么,是不是这些行业之外的企业就与大数据营销隔绝开了呢?

社会化媒体数据
企业积累的数据通常可以分为以下几个类型:一是网络数据,通过互联网加载代码记录用户的浏览及点击行为,也就是海量的网络浏览点击痕迹数据;二是通过芯片记录的产品使用痕迹数据;三是消费行为痕迹数据,涉及少数几个特定的行业,并且其数据跨越了多类产品、多个行业,比如超市的每笔消费数据、淘宝的店主销售信息等。这三类数据主要集中于互联网行业、设备制造行业和零售行业。
此外,这三类数据的特点是“人们在无意识下自然产生的”,因为它难以与消费、使用的“人”建立联系而显得“生硬、不够鲜活”。因此,对这些海量数据进行分析,可以发现信息之间的关联,却难以解释为什么会形成这样的关联;可以发现消费特点,却难以在精准营销的执行层面进行转化,因为无法确切知道产生这些行为的是什么样的人。当然,还有一类数据可以在一定程度上弥补这样的缺陷,比如企业内部的销售、客服部门往往记录了更多的信息,对“人”进行补充描摹,但是这一类数据时效性比较弱,如果不对数据库及时更新致使信息错误率较高。
然而,社会化媒体时代出现了第五类数据,这就是自媒体爆发带来的海量数据。由于粉丝的出现,让企业得以区分社会化媒体中个人与企业的远近关系。粉丝的“自发”特性保证了信息的准确性,而“自媒体”的特性则为企业了解目标群体提供了一个近乎免费的通道,且不受特定的行业限制,这就为不同行业的企业进行大数据营销提供了数据基础。
数据彼此之间的关联
然而,当企业想要挖掘数据的商业价值时,面对庞杂的数据,企业却无从下手:数据量大,杂乱,不规则,一些数据缺失,一些数据模糊。比如,有的企业内部各个部门积累了几万条、十几万条甚至数百万条销售数据和客户信息,然而这些销售数据只涉及产品的销售时间、价格、销售店面信息,或者只是简单记录客户的姓名、性别、年龄、联系方式等,而客户购买产品方面的记录很少。换而言之,企业掌握的是一些彼此割裂的数据。由于中国大多数企业内部各自为战,不同的部门没有建立数据共享的通道,各个渠道的数据彼此之间难以关联。
《大数据时代》一书的作者维克托指出,大数据时代要放弃对因果关系的渴求,转而关注相关关系。美国沃尔玛将尿布与啤酒摆在一起,使尿布和啤酒的销量大幅增加。美国妇女通常在家照顾孩子,她们经常嘱咐丈夫下班回家时为孩子买尿布,而丈夫则顺手购买了啤酒。于是,尿片与啤酒形成了关联。因此,大数据挖掘的基础是数据之间的关联,单独的、片段化的数据再多,在大数据环境中也无法实现其价值。所以,中国企业要对原有的数据进行深度分析,首先要建立数据之间的联系,或以“人”的信息(姓名、手机号、身份证号、住址),或以产品信息(如产品的唯一编码),把各个渠道的数据打通,找到“数据的相关关系”。
数据关联可以是虚拟的
但由此带来一个技术性的问题,因为不是所有的数据都能建立真实的对应联系。某些行业,比如运动服饰,其消费是大众化的,企业没有建立完备的用户信息数据库。那么,在这种情况下,企业如何利用大数据获取增值信息呢?
事实上,企业可以利用社会化媒体进行模糊匹配的方式,更好地理解目标群体——即便现有的数据不能全面反映人群的特质,但可以通过社会化媒体实现“信息转化”,在社会化媒体中找到具有类似特质的“网络虚拟人”,并通过这一特质人群在各类社交媒体的全面信息,从而间接“实现”对目标人群的全面描摹。
事实上,社会化媒体为众多没有“先天数据条件”的企业提供了大数据营销的机会,大数据将跳出“痕迹数据关联分析”的处理模式,从“行为”的相关与预测发展到在Web3.0的360度分析与定位。而基于社会化媒体海量数据的“虚拟关联”模式,则为更多的数据关联提供了可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23