
十个问题让你了解数据挖掘工程师
对于如何学习大数据技能?大多资深数据分析师都会建议在学习书本的基础上参加竞赛,从实践中发现问题提升自己。今天跟我们分享的就是一位长期参加比赛的数据挖掘工程师,他有四年的工作经验,利用业余时间参加kaggle,目前也正在参加DataCastle举办的职位预测竞赛。因为热爱分享,他被其他参赛者亲切称为苍老师!
苍老师:我大学是在佐治亚理工学的计算机科学专业。毕业之初也从事一些软件开发类的职位,但在开发过程中逐渐接触到一些数据挖掘方面的工作,诸如推荐系统,算法模型一类的东西,我觉得这些非常有趣,久而久之开始专攻这一方面。现在就职于上海大岂网络科技有限公司,职位是数据挖掘工程师。
苍老师:技术方面当然会有一些优势,但是工作总因为面临到的问题会各不相同,其内因也不同,因此尤其要自己发明或习惯一种问题思考与处理的流程,学会习惯在理解数据之后再进行后续的操作。从锻炼技术的角度上来说竞赛是一个绝佳的练习与验证。通过竞赛可以学习到以后工作过程中数据处理的各个环节。同时掌握一些以后可能用到的工具与一些工程理念。
苍老师:现在在招聘领域,主要从事在CTR预测与推荐这两方面。
苍老师:我最喜欢的是特征工程的部分,因为这部分牵涉到最多对于数据内部诱因的探寻,也是最能够提升模型效果的部分。这部分工作的挑战最高带来的优化也最高。最不喜欢的是参数的调优,因为需要花费大量的时间去寻找一套最优的参数,是比较枯燥的环节,需要做的是大量计算资源和时间。同时对于ensemble工作也是有些爱恨交织的,好的ensemble可以提升效果,但是如果单个模型的效果不理想或者某一类的模型训练不到位则会拖累整体效果。
苍老师:我在工作中使用python,当然其他诸如R语言,Julia也是数据科学家可选的工具。
对于在校学生我建议是先将编程基础打扎实,无论未来想从事数据挖掘行业的哪一类工作,对于变成算法和数学基础的要求都是一样的。
还有就是数据库方面,涉及到数据的存储和处理,以后都是非常有用的。
数学基础也很重要,概率论和线性代数是非常有用的工具,能够帮助理解算法模型,并且在业务处理过程中更好的读懂数据。
还有就是多关心一些新技术的动态。虽然并不一定会用到,但是新工具和技术的诞生必将会给业界带来一些变革和方便。
苍老师:首先我觉得做数据是很有趣的一件事,并不会因为处理数据的问题而觉得枯燥。所以参加竞赛除了是自己的休闲方式之外,还能保持一种对于数据的敏感度。这能更好的帮助自己在工作中的发挥。
苍老师:这个不会,相反我觉得能够提供一些思路上的帮助对于一些新入门机器学习领域的同学来说会有帮助,免去很多我当初学习过程走的弯路。算法的调整是一个迭代过程,任何新的想法都会被放入模型中被验证,还有时间,应该还有上升的空间。
苍老师:多看论文,要有足够可信度的,还有关注一些业内大公司的发现。他们公布的一些算法模型,以及提供的开元代码实现,学习他人的代码能够带来自己的提升。
苍老师:我也这么觉得,其实数据挖掘业内都认为70%甚至更高的工作量都在于数据的预处理阶段,特征的提取和分析以及转换都是和业务理解息息相关的,这就需要对业务有一定的理解。但是如果你从一个行业跳到另一个行业,比如从招聘到金融,还是可以针对数据挖掘设计出一个固定的流程,特征提取方面应当是结合领域知识不断完善有效特征,但这并不妨碍原有的架构的搭建。
苍老师:数据方向的几个发展职位,数据科学家,数据分析师,数据工程师,数据架构师.每一种掌握的技能都不太相同,不过基本上编程能力都是必备的。同时掌握1门数据分析用的开发语言诸如python,R,julia也是必备的推荐的技能包括了c/c++/java,这一类在工程应用中会经常遇到。数据库,关系型和非关系型的优点缺点都可以熟悉下。再来就是更复杂的分布式计算,云存储等框架结构。养成从数据角度去思考的思维模式。
……
其实说了这么多归根结底是先定好一个目标,向着那个目标去努力,循序渐进的去储备自己的专业知识,有机会实践并检验自己的能力,在数据和算法过程中会遇到很多瓶颈阻碍,不要怕,相信你学习的越多越有可能去解决这些问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07